Division of Urology, Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon,
Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
Urol Int. 2022;106(6):596-603. doi: 10.1159/000519480. Epub 2021 Nov 19.
The study aimed to construct and validate a risk prediction model for incidence of postoperative renal failure (PORF) following radical nephrectomy and nephroureterectomy.
The American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database years 2005-2014 were used for the derivation cohort. A stepwise multivariate logistic regression analysis was conducted, and the final model was validated with an independent cohort from the ACS-NSQIP database years 2015-2017.
In cohort of 14,519 patients, 296 (2.0%) developed PORF. The final 9-factor model included age, gender, diabetes, hypertension, BMI, preoperative creatinine, hematocrit, platelet count, and surgical approach. Model receiver-operator curve analysis provided a C-statistic of 0.79 (0.77, 0.82; p < 0.001), and overall calibration testing R2 was 0.99. Model performance in the validation cohort provided a C-statistic of 0.79 (0.76, 0.81; p < 0.001).
PORF is a known risk factor for chronic kidney disease and cardiovascular morbidity, and is a common occurrence after unilateral kidney removal. The authors propose a robust and validated risk prediction model to aid in identification of high-risk patients and optimization of perioperative care.
本研究旨在构建和验证肾部分切除术和肾输尿管切除术术后肾功能衰竭(PORF)发生率的风险预测模型。
使用美国外科医师学会国家手术质量改进计划(ACS-NSQIP)数据库 2005-2014 年的数据进行推导队列。进行逐步多变量逻辑回归分析,并使用 ACS-NSQIP 数据库 2015-2017 年的数据进行独立队列验证。
在 14519 例患者的队列中,有 296 例(2.0%)发生 PORF。最终的 9 因素模型包括年龄、性别、糖尿病、高血压、BMI、术前肌酐、血细胞比容、血小板计数和手术方式。模型接受者操作特征曲线分析提供了 0.79(0.77,0.82;p < 0.001)的 C 统计量,整体校准测试 R2 为 0.99。验证队列中的模型性能提供了 0.79(0.76,0.81;p < 0.001)的 C 统计量。
PORF 是慢性肾脏病和心血管发病率的已知危险因素,也是单侧肾脏切除术后的常见并发症。作者提出了一种强大且经过验证的风险预测模型,以帮助识别高危患者并优化围手术期护理。