Satpathi Niladri Sekhar, Malik Lokesh, Ramasamy Alwar Samy, Sen Ashis Kumar
Fluid Systems Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, 600036 Tamil Nadu, India.
Langmuir. 2021 Dec 7;37(48):14195-14204. doi: 10.1021/acs.langmuir.1c02654. Epub 2021 Nov 21.
The spatial variation in the wettability of a surface can have a significant effect on the spreading and retraction behavior of an impacting droplet and hence the overall impact dynamics. Although composite surfaces have proven applications, there is a lack of understanding of droplet impact on surfaces with a sudden jump in wettability. Here, we study the behavior of a liquid drop impacting a composite surface having a superhydrophilic (SHL) spot surrounded by a superhydrophobic (SHB) region. We find that the droplet exhibits different regimes: no-splitting, jetting, and splashing, depending upon the spot size (β) and the Weber number (). At a smaller β, the behavior shifts from the stable to jetting regime and then to the splashing regime, with increasing . We find that by increasing the value of β, one can avoid the undesirable splashing and jetting regimes and attain a stable regime even at a higher . Our study reveals that β has a significant influence on the maximum spreading diameter β at a smaller but a negligible effect at a higher . We show that the dominance of capillary energy at a smaller and viscous energy at a higher underpins the phenomena. We employ an energy conservation approach to develop an analytical model to predict β on a composite SHL-SHB surface by considering the total energy of the system before the impact and at the maximum spread position. We find = (/) emerges as a key parameter in the model that accurately predicts the experimentally measured β. Our study reveals the existence of an inertia-viscous dominated regime at a smaller and an inertia-capillary dominated regime at a larger . The outcome of our study may find applications in stable and precise positioning of impacting droplets.
表面润湿性的空间变化会对撞击液滴的铺展和回缩行为产生显著影响,进而影响整体撞击动力学。尽管复合表面已有实际应用,但对于液滴撞击润湿性突然变化的表面的情况,人们还缺乏了解。在此,我们研究了液滴撞击具有超亲水(SHL)斑点且被超疏水(SHB)区域包围的复合表面的行为。我们发现,根据斑点尺寸(β)和韦伯数()的不同,液滴呈现出不同的状态:不分裂、喷射和飞溅。在较小的β值下,随着的增加,行为从稳定状态转变为喷射状态,然后变为飞溅状态。我们发现,通过增大β值,即使在较高的时,也可以避免不希望出现的飞溅和喷射状态,实现稳定状态。我们的研究表明,在较小时,β对最大铺展直径β有显著影响,但在较高时影响可忽略不计。我们表明,在较小时毛细能占主导,在较高时粘性能占主导,这是这些现象的基础。我们采用能量守恒方法,通过考虑撞击前和最大铺展位置时系统的总能量,建立了一个分析模型来预测复合SHL - SHB表面上的β。我们发现 = (/)成为模型中的关键参数,能够准确预测实验测量的β。我们的研究揭示了在较小时存在惯性 - 粘性主导的状态,在较大时存在惯性 - 毛细主导的状态。我们研究的结果可能在撞击液滴的稳定和精确定位方面有应用。