Suppr超能文献

液滴对倾斜超疏水表面的撞击。

Drop impact on inclined superhydrophobic surfaces.

作者信息

LeClear Sani, LeClear Johnathon, Park Kyoo-Chul, Choi Wonjae

机构信息

Department of Mechanical Engineering, University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080, USA.

John A. Paulson School of Engineering and Applied Sciences, Harvard University, 52 Oxford St., Cambridge, MA 02138, USA.

出版信息

J Colloid Interface Sci. 2016 Jan 1;461:114-121. doi: 10.1016/j.jcis.2015.09.026. Epub 2015 Sep 9.

Abstract

This paper discusses the dynamic behavior of water drops impacting on inclined superhydrophobic surfaces. For a normal impact on a smooth hydrophobic surface, the spreading (or expansion) and retraction dynamics of an impacting drop varies from complete rebound to splashing depending on its Weber number, (We(d)), calculated using the impact speed and diameter d of the drop. For a slanted impact, on the other hand, the impact dynamics depends on two distinct Weber numbers, based on the velocity components normal, (We(nd)), and tangential, (We(td)), to the surface. Impact on superhydrophobic surfaces is even more complicated as the surfaces are covered with micro- to nano-scale texture. Therefore, we develop an expression for an additional set of two Weber numbers, (We(na), We(ta)), which are counterparts to the first set but use the gap distance a between asperities on the textured surface as the characteristic length. We correlate the derived Weber numbers with the impact dynamics on tilted surfaces covered with three different types of texture: (i) posts, (ii) ridges aligned with and (iii) ridges perpendicular to the impact direction. Results suggest that the first two Weber numbers, (We(nd), We(td)), affect the impact dynamics of a drop such as the degree of drop deformation as long as the superhydrophobicity remains intact. On the other hand, the Weber number We(na) determines the transition from the superhydrophobic Cassie-Baxter regime to the fully-wetted Wenzel regime. Accuracy of our model becomes lower at a high tilting angle (75°), due to the change in the transition mechanism.

摘要

本文讨论了水滴撞击倾斜超疏水表面的动力学行为。对于水滴垂直撞击光滑疏水表面的情况,根据其韦伯数(We(d)),撞击水滴的铺展(或扩展)和回缩动力学从完全反弹到飞溅各不相同,韦伯数是根据水滴的撞击速度和直径d计算得出的。另一方面,对于倾斜撞击,撞击动力学取决于两个不同的韦伯数,分别基于垂直于表面的速度分量(We(nd))和平行于表面的速度分量(We(td))。由于超疏水表面覆盖着微米到纳米尺度的纹理,水滴撞击超疏水表面的情况更加复杂。因此,我们推导出了另外一组两个韦伯数(We(na),We(ta))的表达式,它们与第一组韦伯数相对应,但使用纹理表面上微凸体之间的间隙距离a作为特征长度。我们将推导出的韦伯数与覆盖三种不同类型纹理的倾斜表面上的撞击动力学相关联:(i)柱状结构,(ii)与撞击方向对齐的脊状结构,以及(iii)与撞击方向垂直的脊状结构。结果表明,只要超疏水性保持不变,前两个韦伯数(We(nd),We(td))会影响水滴的撞击动力学,比如水滴变形程度。另一方面,韦伯数We(na)决定了从超疏水的卡西 - 巴克斯特状态到完全润湿的文泽尔状态的转变。由于转变机制的变化,在高倾斜角度(75°)下我们模型的精度会降低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验