Suppr超能文献

有限元分析探讨磁激励超声中的位移模式。

Displacement Patterns in Magnetomotive Ultrasound Explored by Finite Element Analysis.

机构信息

Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden.

Biomedical Engineering, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.

出版信息

Ultrasound Med Biol. 2022 Feb;48(2):333-345. doi: 10.1016/j.ultrasmedbio.2021.10.011. Epub 2021 Nov 18.

Abstract

Magnetomotive ultrasound is an emerging technique that enables detection of magnetic nanoparticles. This has implications for ultrasound molecular imaging, and potentially addresses clinical needs regarding determination of metastatic infiltration of the lymphatic system. Contrast is achieved by a time-varying magnetic field that sets nanoparticle-laden regions in motion. This motion is governed by vector-valued mechanical and magnetic forces. Understanding how these forces contribute to observed displacement patterns is important for the interpretation of magnetomotive ultrasound images. Previous studies have captured motion adjacent to nanoparticle-laden regions that was attributed to diamagnetism. While diamagnetism could give rise to a force, it cannot fully account for the observed displacements in magnetomotive ultrasound. To isolate explanatory variables of the observed displacements, a finite element model is set up. Using this model, we explore potential causes of the unexplained motion by comparing numerical models with earlier experimental findings. The simulations reveal motion outside particle-laden regions that could be attributed to mechanical coupling and the principle of mass conservation. These factors produced a motion that counterbalanced the time-varying magnetic excitation, and whose extent and distribution was affected by boundary conditions as well as compressibility and stiffness of the surroundings. Our findings emphasize the importance of accounting for the vector-valued magnetic force in magnetomotive ultrasound imaging. In an axisymmetric geometry, that force can be represented by a simple scalar expression, an oversimplification that rapidly becomes inaccurate with distance from the symmetry axis. Additionally, it results in an underestimation of the vertical force component by up to 30%. We therefore recommend using the full vector-valued force to capture the magnetic interaction. This study enhances our understanding of how forces govern magnetic nanoparticle displacement in tissue, contributing to accurate analysis and interpretation of magnetomotive ultrasound imaging.

摘要

磁共振超声是一种新兴技术,能够检测磁性纳米粒子。这对超声分子成像具有重要意义,并且有可能满足关于确定淋巴系统转移性浸润的临床需求。对比度是通过时变磁场实现的,该磁场使载纳米粒子的区域运动。这种运动由向量机械力和磁力控制。理解这些力如何导致观察到的位移模式对于解释磁共振超声图像非常重要。以前的研究已经捕获了载纳米粒子区域附近的运动,这些运动归因于抗磁性。虽然抗磁性可能会产生力,但它不能完全解释磁共振超声中观察到的位移。为了分离观察到的位移的解释变量,建立了有限元模型。使用该模型,我们通过将数值模型与早期实验结果进行比较,来探索观察到的运动的潜在原因。模拟揭示了载粒子区域外的运动,这些运动可能归因于机械耦合和质量守恒原理。这些因素产生了与时变磁场激励相反的运动,其程度和分布受到边界条件以及周围环境的可压缩性和刚度的影响。我们的研究结果强调了在磁共振超声成像中考虑向量磁力的重要性。在轴对称几何中,该力可以用一个简单的标量表达式表示,这种简化随着距离对称轴的增加而迅速变得不准确。此外,它会导致垂直力分量低估高达 30%。因此,我们建议使用全向量力来捕获磁性相互作用。这项研究增强了我们对力如何控制组织中磁性纳米粒子位移的理解,有助于对磁共振超声成像进行准确的分析和解释。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验