Suppr超能文献

通过传感器数据和机器学习揭示的整个河流网络尺度上的代谢机制

The Metabolic Regimes at the Scale of an Entire Stream Network Unveiled Through Sensor Data and Machine Learning.

作者信息

Segatto Pier Luigi, Battin Tom J, Bertuzzo Enrico

机构信息

Stream Biofilm and Ecosystem Research Laboratory, Ecole Polytechinque Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.

Department of Environmental Sciences, Informatics and Statistics, University of Venice Ca' Foscari, 30170 Venice, Italy.

出版信息

Ecosystems. 2021;24(7):1792-1809. doi: 10.1007/s10021-021-00618-8. Epub 2021 Apr 2.

Abstract

UNLABELLED

Streams and rivers form dense networks that drain the terrestrial landscape and are relevant for biodiversity dynamics, ecosystem functioning, and transport and transformation of carbon. Yet, resolving in both space and time gross primary production (GPP), ecosystem respiration (ER) and net ecosystem production (NEP) at the scale of entire stream networks has been elusive so far. Here, combining Random Forest (RF) with time series of sensor data in 12 reach sites, we predicted annual regimes of GPP, ER, and NEP in 292 individual stream reaches and disclosed properties emerging from the network they form. We further predicted available light and thermal regimes for the entire network and expanded the library of stream metabolism predictors. We found that the annual network-scale metabolism was heterotrophic yet with a clear peak of autotrophy in spring. In agreement with the River Continuum Concept, small headwaters and larger downstream reaches contributed 16% and 60%, respectively, to the annual network-scale GPP. Our results suggest that ER rather than GPP drives the metabolic stability at the network scale, which is likely attributable to the buffering function of the streambed for ER, while GPP is more susceptible to flow-induced disturbance and fluctuations in light availability. Furthermore, we found large terrestrial subsidies fueling ER, pointing to an unexpectedly high network-scale level of heterotrophy, otherwise masked by simply considering reach-scale NEP estimations. Our machine learning approach sheds new light on the spatiotemporal dynamics of ecosystem metabolism at the network scale, which is a prerequisite to integrate aquatic and terrestrial carbon cycling at relevant scales.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at (10.1007/s10021-021-00618-8).

摘要

未标注

溪流和河流形成密集的网络,排泄陆地景观,与生物多样性动态、生态系统功能以及碳的运输和转化相关。然而,到目前为止,在整个溪流网络尺度上同时在空间和时间上解析总初级生产力(GPP)、生态系统呼吸(ER)和净生态系统生产力(NEP)一直难以实现。在此,我们将随机森林(RF)与12个河段站点的传感器数据时间序列相结合,预测了292条独立溪流河段的GPP、ER和NEP的年度变化规律,并揭示了它们所形成网络中出现的特性。我们还预测了整个网络的可用光照和热状况,并扩展了溪流代谢预测指标库。我们发现,年度网络尺度的代谢是异养的,但在春季有一个明显的自养高峰。与河流连续体概念一致,小型源头溪流和较大的下游河段分别对年度网络尺度GPP贡献了16%和60%。我们的结果表明,在网络尺度上,是ER而非GPP驱动了代谢稳定性,这可能归因于河床对ER的缓冲作用,而GPP更容易受到水流引起的干扰和光照可用性波动的影响。此外,我们发现大量陆地补贴为ER提供了养分,这表明网络尺度上的异养水平出乎意料地高,否则通过简单考虑河段尺度的NEP估计会被掩盖。我们的机器学习方法为网络尺度上生态系统代谢的时空动态提供了新的见解,这是在相关尺度上整合水生和陆地碳循环的先决条件。

补充信息

在线版本包含可在(10.1007/s10021-021-00618-8)获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/586a/8593893/ee6e90cd5d28/10021_2021_618_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验