Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany.
Michael-Stifel-Center Jena for Data-driven and Simulation Science, Jena, Germany.
Nature. 2019 Feb;566(7743):195-204. doi: 10.1038/s41586-019-0912-1. Epub 2019 Feb 13.
Machine learning approaches are increasingly used to extract patterns and insights from the ever-increasing stream of geospatial data, but current approaches may not be optimal when system behaviour is dominated by spatial or temporal context. Here, rather than amending classical machine learning, we argue that these contextual cues should be used as part of deep learning (an approach that is able to extract spatio-temporal features automatically) to gain further process understanding of Earth system science problems, improving the predictive ability of seasonal forecasting and modelling of long-range spatial connections across multiple timescales, for example. The next step will be a hybrid modelling approach, coupling physical process models with the versatility of data-driven machine learning.
机器学习方法越来越多地被用于从不断增加的地理空间数据流中提取模式和洞察,但当系统行为主要受空间或时间上下文影响时,当前的方法可能并不理想。在这里,我们不是修改经典的机器学习,而是认为这些上下文提示应该作为深度学习的一部分(一种能够自动提取时空特征的方法)来进一步深入了解地球系统科学问题,例如,提高季节性预测的预测能力和在多个时间尺度上对长程空间连接的建模。下一步将是一种混合建模方法,将物理过程模型与数据驱动的机器学习的多功能性相结合。