Zhou Huijuan, Zhang Xianyang, Chen Jun
Institute of Statistics and Big Data, Renmin University of China, Beijing 100872, China.
Department of Statistics, Texas A&M University, College Station, Texas 77843, U.S.A.
Biometrika. 2020 Nov 27;108(4):915-931. doi: 10.1093/biomet/asaa098. eCollection 2021 Dec.
The familywise error rate has been widely used in genome-wide association studies. With the increasing availability of functional genomics data, it is possible to increase detection power by leveraging these genomic functional annotations. Previous efforts to accommodate covariates in multiple testing focused on false discovery rate control, while covariate-adaptive procedures controlling the familywise error rate remain underdeveloped. Here, we propose a novel covariate-adaptive procedure to control the familywise error rate that incorporates external covariates which are potentially informative of either the statistical power or the prior null probability. An efficient algorithm is developed to implement the proposed method. We prove its asymptotic validity and obtain the rate of convergence through a perturbation-type argument. Our numerical studies show that the new procedure is more powerful than competing methods and maintains robustness across different settings. We apply the proposed approach to the UK Biobank data and analyse 27 traits with 9 million single-nucleotide polymorphisms tested for associations. Seventy-five genomic annotations are used as covariates. Our approach detects more genome-wide significant loci than other methods in 21 out of the 27 traits.
家族性错误率已在全基因组关联研究中广泛使用。随着功能基因组学数据的日益可得,利用这些基因组功能注释来提高检测能力成为可能。先前在多重检验中纳入协变量的工作主要集中在错误发现率控制上,而控制家族性错误率的协变量自适应程序仍未得到充分发展。在此,我们提出一种新颖的协变量自适应程序来控制家族性错误率,该程序纳入了外部协变量,这些协变量可能对统计能力或先验零概率具有潜在信息。我们开发了一种高效算法来实现所提出的方法。我们证明了其渐近有效性,并通过一种扰动型论证获得了收敛速度。我们的数值研究表明,新程序比其他竞争方法更具检测能力,并且在不同设置下都保持稳健性。我们将所提出的方法应用于英国生物银行数据,并分析了27种性状,对900万个单核苷酸多态性进行了关联测试。使用了75种基因组注释作为协变量。在27种性状中的21种性状上,我们的方法比其他方法检测到更多的全基因组显著位点。