Ignatiadis Nikolaos, Klaus Bernd, Zaugg Judith B, Huber Wolfgang
European Molecular Biology Laboratory, Heidelberg, Germany.
Nat Methods. 2016 Jul;13(7):577-80. doi: 10.1038/nmeth.3885. Epub 2016 May 30.
Hypothesis weighting improves the power of large-scale multiple testing. We describe independent hypothesis weighting (IHW), a method that assigns weights using covariates independent of the P-values under the null hypothesis but informative of each test's power or prior probability of the null hypothesis (http://www.bioconductor.org/packages/IHW). IHW increases power while controlling the false discovery rate and is a practical approach to discovering associations in genomics, high-throughput biology and other large data sets.
假设加权提高了大规模多重检验的效能。我们描述了独立假设加权法(IHW),这是一种利用与原假设下P值无关但能反映每个检验效能或原假设先验概率的协变量来分配权重的方法(http://www.bioconductor.org/packages/IHW)。IHW在控制错误发现率的同时提高了效能,是在基因组学、高通量生物学和其他大数据集中发现关联的一种实用方法。