Suppr超能文献

数据驱动的假设加权提高了基因组规模多重检验中的检测能力。

Data-driven hypothesis weighting increases detection power in genome-scale multiple testing.

作者信息

Ignatiadis Nikolaos, Klaus Bernd, Zaugg Judith B, Huber Wolfgang

机构信息

European Molecular Biology Laboratory, Heidelberg, Germany.

出版信息

Nat Methods. 2016 Jul;13(7):577-80. doi: 10.1038/nmeth.3885. Epub 2016 May 30.

Abstract

Hypothesis weighting improves the power of large-scale multiple testing. We describe independent hypothesis weighting (IHW), a method that assigns weights using covariates independent of the P-values under the null hypothesis but informative of each test's power or prior probability of the null hypothesis (http://www.bioconductor.org/packages/IHW). IHW increases power while controlling the false discovery rate and is a practical approach to discovering associations in genomics, high-throughput biology and other large data sets.

摘要

假设加权提高了大规模多重检验的效能。我们描述了独立假设加权法(IHW),这是一种利用与原假设下P值无关但能反映每个检验效能或原假设先验概率的协变量来分配权重的方法(http://www.bioconductor.org/packages/IHW)。IHW在控制错误发现率的同时提高了效能,是在基因组学、高通量生物学和其他大数据集中发现关联的一种实用方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b284/4930141/7628c853fb07/emss-68345-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验