Suppr超能文献

基于数据挖掘的中医治疗消化性溃疡用药规律研究。

Exploring the Medication Pattern of Chinese Medicine for Peptic Ulcer Based on Data Mining.

机构信息

Second Department of Spleen and Stomach Diseases, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou City 730050, Gansu, China.

Department of Anorectal Diseases, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou City 730050, China.

出版信息

J Healthc Eng. 2021 Nov 11;2021:9072172. doi: 10.1155/2021/9072172. eCollection 2021.

Abstract

During the last decades, Chinese medicine has been widely used for curing various diseases in the healthcare domain. Based on the databases of medicine wisdom and modern application of prescriptions, we have explored the medication pattern of ancient and modern prescriptions for the treatment of peptic ulcer in various patients. In this paper, we have proposed a neural network model which is based on the time series decomposition and is able to mine and predict the medication pattern of peptic ulcer treatment in Chinese medicine. For this purpose, cumulative distance level method, Mann-Kendall trend analysis, Hurst exponent, and characteristic point methods are used for the trend analysis. Likewise in the proposed model, the wavelet analysis method is used for the periodicity analysis and Mann-Kendall mutation test method along with Pettitt methods is used for mutability analysis. In addition, autocorrelation and unit root methods are utilized to test the random terms. The Chinese herbal formulas (where the main diseases are peptic ulcer, peptic ulcer, cerebral leakage, and cerebral abscess) are collected from the databases of medicine wisdom and modern application of prescriptions. Furthermore, methods of frequency analysis, association rule analysis, and factor analysis are used to evaluate the grouping pattern of prescriptions for peptic ulcer treatment. The error in the proposed scheme between the predicted and the measured values of 87 prescriptions, which involve five Chinese medicines for peptic ulcer and 160 Chinese medicines, obtained from the neural network was 16.79%.

摘要

在过去的几十年中,中医在医疗领域被广泛用于治疗各种疾病。基于医学智慧数据库和现代处方应用,我们探索了不同患者的古方和今方治疗消化性溃疡的用药模式。在本文中,我们提出了一种基于时间序列分解的神经网络模型,能够挖掘和预测中医治疗消化性溃疡的用药模式。为此,采用累积距离水平法、Mann-Kendall 趋势分析、Hurst 指数和特征点方法进行趋势分析。同样,在提出的模型中,采用小波分析方法进行周期性分析,采用曼恩-肯德尔突变检验法和 Pettitt 方法进行可变性分析。此外,还采用自相关和单位根方法来检验随机项。中草药配方(主要疾病是消化性溃疡、消化性溃疡、脑漏和脑脓肿)是从医学智慧数据库和现代处方应用中收集的。此外,采用频率分析、关联规则分析和因子分析方法评估消化性溃疡治疗处方的分组模式。从神经网络获得的 87 个处方中,涉及治疗消化性溃疡的 5 种中药和 160 种中药,该方案的预测值和实测值之间的误差为 16.79%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08d5/8601794/0a462a602019/JHE2021-9072172.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验