Elbatal I
Department of Mathematics and Statistics - College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Saudi Arabia.
Results Phys. 2021 Dec;31:104979. doi: 10.1016/j.rinp.2021.104979. Epub 2021 Nov 14.
In parametric statistical modeling and inference, it is critical to develop generalizations of existing statistical distributions to make them more flexible in modeling real data sets. Thus , this paper contributes to the subject by investigating a new flexible and versatile generalized family of distributions defined from the alliance of the families known as beta-G and Topp-Leone generated (TL-G), inspiring the name of BTL-G family. The characteristics of this new family are studied through analytical, graphical and numerical approaches. Statistical features of the family such as expansion of density function (pdf), cumulative function (cdf), moments (MOs), incomplete moments (IMOs), mean deviation (MDE), and entropy (ENT) are calculated. The model parameters' maximum likelihood estimates (MaxLEs) and Bayesian estimates (BEs) are provided. Symmetric and Asymmetric Bayesian Loss function have been discussed. A complete simulation study is proposed to illustrate their numerical efficiency. The considered model is also applied to analyze two different kinds of genuine COVID 19 data sets. We show that it outperforms other well-known models defined with the same baseline distribution, proving its high level of adaptability in the context of data analysis.
在参数统计建模与推断中,拓展现有统计分布以使其在对实际数据集进行建模时更具灵活性至关重要。因此,本文通过研究一种新的灵活通用的广义分布族来对这一主题做出贡献,该分布族由被称为贝塔 - G分布族和托普 - 莱昂纳生成(TL - G)的分布族联合定义,由此启发了BTL - G分布族这一名称。通过解析、图形和数值方法对这个新分布族的特性进行了研究。计算了该分布族的统计特征,如概率密度函数(pdf)的展开、累积分布函数(cdf)、矩(MOs)、不完全矩(IMOs)、平均偏差(MDE)和熵(ENT)。给出了模型参数的最大似然估计(MaxLEs)和贝叶斯估计(BEs)。讨论了对称和非对称贝叶斯损失函数。提出了一个完整的模拟研究以说明它们的数值效率。所考虑的模型还被应用于分析两种不同类型的真实新冠病毒19数据集。我们表明它优于其他以相同基线分布定义的知名模型,证明了其在数据分析背景下的高度适应性。