Suppr超能文献

关于I型半逻辑奇数威布尔发生器的贝叶斯和频率推断及其在工程中的应用

Bayesian and Frequentist Inferences on a Type I Half-Logistic Odd Weibull Generator with Applications in Engineering.

作者信息

El-Morshedy Mahmoud, Alshammari Fahad Sameer, Tyagi Abhishek, Elbatal Iberahim, Hamed Yasser S, Eliwa Mohamed S

机构信息

Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.

Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.

出版信息

Entropy (Basel). 2021 Apr 10;23(4):446. doi: 10.3390/e23040446.

Abstract

In this article, we have proposed a new generalization of the odd Weibull-G family by consolidating two notable families of distributions. We have derived various mathematical properties of the proposed family, including quantile function, skewness, kurtosis, moments, incomplete moments, mean deviation, Bonferroni and Lorenz curves, probability weighted moments, moments of (reversed) residual lifetime, entropy and order statistics. After producing the general class, two of the corresponding parametric statistical models are outlined. The hazard rate function of the sub-models can take a variety of shapes such as increasing, decreasing, unimodal, and Bathtub shaped, for different values of the parameters. Furthermore, the sub-models of the introduced family are also capable of modelling symmetric and skewed data. The parameter estimation of the special models are discussed by numerous methods, namely, the maximum likelihood, simple least squares, weighted least squares, Cramér-von Mises, and Bayesian estimation. Under the Bayesian framework, we have used informative and non-informative priors to obtain Bayes estimates of unknown parameters with the squared error and generalized entropy loss functions. An extensive Monte Carlo simulation is conducted to assess the effectiveness of these estimation techniques. The applicability of two sub-models of the proposed family is illustrated by means of two real data sets.

摘要

在本文中,我们通过合并两个著名的分布族,提出了奇数威布尔 - G族的一种新的推广形式。我们推导了所提出族的各种数学性质,包括分位数函数、偏度、峰度、矩、不完全矩、平均偏差、邦费罗尼曲线和洛伦兹曲线、概率加权矩、(反向)剩余寿命的矩、熵和顺序统计量。在生成一般类之后,概述了两个相应的参数统计模型。对于不同的参数值,子模型的危险率函数可以呈现多种形状,如递增、递减、单峰和浴缸形。此外,所引入族的子模型也能够对对称和偏态数据进行建模。通过多种方法讨论了特殊模型的参数估计,即最大似然法、简单最小二乘法、加权最小二乘法、克拉美 - 冯·米塞斯法和贝叶斯估计法。在贝叶斯框架下,我们使用了信息性和非信息性先验分布,通过平方误差和广义熵损失函数来获得未知参数的贝叶斯估计值。进行了广泛的蒙特卡罗模拟,以评估这些估计技术的有效性。通过两个真实数据集说明了所提出族的两个子模型的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8deb/8069396/7ddb88eebf2c/entropy-23-00446-g001.jpg

相似文献

2
Exponentiated odd Chen-G family of distributions: statistical properties, Bayesian and non-Bayesian estimation with applications.
J Appl Stat. 2020 Jun 23;48(11):1948-1974. doi: 10.1080/02664763.2020.1783520. eCollection 2021.
3
A discrete analogue of odd Weibull-G family of distributions: properties, classical and Bayesian estimation with applications to count data.
J Appl Stat. 2021 May 24;49(11):2928-2952. doi: 10.1080/02664763.2021.1928018. eCollection 2022.
4
A New Generator of Probability Models: The Exponentiated Sine-G Family for Lifetime Studies.
Entropy (Basel). 2021 Oct 24;23(11):1394. doi: 10.3390/e23111394.
5
A New Extension of the Generalized Half Logistic Distribution with Applications to Real Data.
Entropy (Basel). 2019 Mar 28;21(4):339. doi: 10.3390/e21040339.
6
Topp-Leone odd log-logistic exponential distribution: Its improved estimators and applications.
An Acad Bras Cienc. 2021 Sep 17;93(4):e20190586. doi: 10.1590/0001-3765202120190586. eCollection 2021.
7
A new one-parameter lifetime distribution and its regression model with applications.
PLoS One. 2021 Feb 19;16(2):e0246969. doi: 10.1371/journal.pone.0246969. eCollection 2021.
9
A family of Gamma-generated distributions: Statistical properties and applications.
Stat Methods Med Res. 2021 Aug;30(8):1850-1873. doi: 10.1177/09622802211009262. Epub 2021 May 18.
10
The Odd Weibull Inverse Topp-Leone Distribution with Applications to COVID-19 Data.
Ann Data Sci. 2022;9(1):121-140. doi: 10.1007/s40745-021-00329-w. Epub 2021 Apr 12.

引用本文的文献

1
A new asymmetric extended family: Properties and estimation methods with actuarial applications.
PLoS One. 2022 Oct 6;17(10):e0275001. doi: 10.1371/journal.pone.0275001. eCollection 2022.

本文引用的文献

1
Exponentiated odd Chen-G family of distributions: statistical properties, Bayesian and non-Bayesian estimation with applications.
J Appl Stat. 2020 Jun 23;48(11):1948-1974. doi: 10.1080/02664763.2020.1783520. eCollection 2021.
2
Stochastic relaxation, gibbs distributions, and the bayesian restoration of images.
IEEE Trans Pattern Anal Mach Intell. 1984 Jun;6(6):721-41. doi: 10.1109/tpami.1984.4767596.
3
The Monte Carlo method.
J Am Stat Assoc. 1949 Sep;44(247):335-41. doi: 10.1080/01621459.1949.10483310.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验