Voyager Therapeutics, Cambridge, Massachusetts, USA.
Sanofi-Genzyme, Framingham, Massachusetts, USA.
Hum Gene Ther. 2022 Jan;33(1-2):37-60. doi: 10.1089/hum.2021.221. Epub 2022 Jan 10.
Huntington's disease is a fatal neurodegenerative disorder caused by an inherited mutation in the huntingtin () gene comprising an expanded cytosine-adenine-guanine (CAG) trinucleotide repeat sequence that results in a pathogenic huntingtin protein. Adeno-associated viral (AAV) gene therapy containing a primary artificial microRNA (pri-amiRNA) specifically targeting messenger RNA (mRNA) has the potential to provide long-lasting therapeutic benefit, through durable reduction of mutant expression after a single administration. The efficiency and precision of processing of the pri-amiRNA precursor to the mature guide (G) strand by transduced cells are critical for specific and potent mRNA lowering. The selection of the optimized pri-amiRNA comprised a series of studies followed by studies in small and then large mammals. Our studies demonstrate the predictivity of certain cell culture systems and rodent models for nonhuman primates with respect to some, but not all key features of pri-amiRNA processing. In addition, our results show that the processing of pri-amiRNAs to the mature guide strand can differ greatly across different scaffolds and sequences while providing the same levels of target lowering. Importantly, our data demonstrate that there is a combinatorial effect of guide and passenger (P) strand sequences, together with the scaffold, on pri-amiRNA processing, with different guide and passenger strand sequences within the same scaffold dramatically altering pri-amiRNA processing. Taken together, our results highlight the importance of optimizing not only target lowering but also the efficiency and precision of pri-amiRNA processing , in rodents and in large mammals to identify the most potent and selective AAV gene therapy that harnesses the endogenous microRNA (miRNA) biogenesis pathway for target lowering without perturbing the endogenous cellular miRNA profile. The optimized pri-amiRNA was selected with this focus on efficiency and precision of pri-amiRNA processing in addition to its pharmacological activity on mRNA lowering and general tolerability .
亨廷顿病是一种致命的神经退行性疾病,由亨廷顿 () 基因中的遗传突变引起,该突变由扩展的胞嘧啶-腺嘌呤-鸟嘌呤 (CAG) 三核苷酸重复序列组成,导致致病性亨廷顿蛋白。腺相关病毒 (AAV) 基因治疗包含一种针对信使 RNA (mRNA) 的主要人工 microRNA (pri-amiRNA),通过单次给药后持久减少突变体的表达,有可能提供持久的治疗益处。转导细胞对 pri-amiRNA 前体到成熟引导 (G) 链的加工效率和精度对于特定且有效的 mRNA 降低至关重要。优化的 pri-amiRNA 的选择包括一系列研究,随后在小型和大型哺乳动物中进行了研究。我们的研究表明,某些细胞培养系统和啮齿动物模型对于非人灵长类动物具有预测性,就某些但不是所有 pri-amiRNA 加工的关键特征而言。此外,我们的结果表明,在提供相同靶标降低水平的情况下,pri-amiRNA 到成熟引导链的加工可以在不同的支架和序列之间有很大差异。重要的是,我们的数据表明,引导和过客 (P) 链序列以及支架的组合对 pri-amiRNA 加工具有组合效应,同一支架内的不同引导和过客链序列会极大地改变 pri-amiRNA 加工。总之,我们的结果强调了不仅要优化靶标降低,还要优化 pri-amiRNA 加工的效率和精度的重要性,无论是在啮齿动物还是大型哺乳动物中,以确定最有效和选择性的 AAV 基因治疗,利用内源性 microRNA (miRNA) 生物发生途径来降低靶标,而不会干扰内源性细胞 miRNA 谱。除了降低 mRNA 的药理学活性和一般耐受性外,该 pri-amiRNA 是根据其对 pri-amiRNA 加工的效率和精度进行优化选择的。