Suppr超能文献

一种新颖的贝叶斯功能空间分区方法及其在 MRI 前列腺癌病灶检测中的应用。

A novel Bayesian functional spatial partitioning method with application to prostate cancer lesion detection using MRI.

机构信息

Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota.

Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota.

出版信息

Biometrics. 2023 Jun;79(2):604-615. doi: 10.1111/biom.13602. Epub 2021 Dec 8.

Abstract

Spatial partitioning methods correct for nonstationarity in spatially related data by partitioning the space into regions of local stationarity. Existing spatial partitioning methods can only estimate linear partitioning boundaries. This is inadequate for detecting an arbitrarily shaped anomalous spatial region within a larger area. We propose a novel Bayesian functional spatial partitioning (BFSP) algorithm, which estimates closed curves that act as partitioning boundaries around anomalous regions of data with a distinct distribution or spatial process. Our method utilizes transitions between a fixed Cartesian and moving polar coordinate system to model the smooth boundary curves using functional estimation tools. Using adaptive Metropolis-Hastings, the BFSP algorithm simultaneously estimates the partitioning boundary and the parameters of the spatial distributions within each region. Through simulation we show that our method is robust to shape of the target zone and region-specific spatial processes. We illustrate our method through the detection of prostate cancer lesions using magnetic resonance imaging.

摘要

空间分区方法通过将空间划分为局部平稳的区域来纠正空间相关数据中的非平稳性。现有的空间分区方法只能估计线性分区边界。这对于检测较大区域内具有独特分布或空间过程的任意形状异常空间区域是不够的。我们提出了一种新的贝叶斯函数空间分区(BFSP)算法,该算法估计封闭曲线作为具有不同分布或空间过程的异常数据区域周围的分区边界。我们的方法利用固定笛卡尔坐标系和移动极坐标系之间的转换,使用功能估计工具对平滑边界曲线进行建模。使用自适应 Metropolis-Hastings,BFSP 算法同时估计分区边界和每个区域内空间分布的参数。通过仿真,我们表明我们的方法对目标区域的形状和特定区域的空间过程具有稳健性。我们通过使用磁共振成像检测前列腺癌病变来说明我们的方法。

相似文献

2
A General Bayesian Functional Spatial Partitioning Method for Multiple Region Discovery Applied to Prostate Cancer MRI.
Bayesian Anal. 2024 Jun;19(2):623-647. doi: 10.1214/23-ba1366. Epub 2024 Jun 28.
5
Bayesian panel smooth transition model with spatial correlation.
PLoS One. 2019 Mar 4;14(3):e0211467. doi: 10.1371/journal.pone.0211467. eCollection 2019.
6
Detection of prostate cancer with multiparametric MRI utilizing the anatomic structure of the prostate.
Stat Med. 2018 Sep 30;37(22):3214-3229. doi: 10.1002/sim.7810. Epub 2018 Jun 19.
7
A comparison of Bayesian and non-linear regression methods for robust estimation of pharmacokinetics in DCE-MRI and how it affects cancer diagnosis.
Comput Med Imaging Graph. 2017 Mar;56:1-10. doi: 10.1016/j.compmedimag.2017.01.003. Epub 2017 Feb 5.
8
A Monte Carlo Metropolis-Hastings algorithm for sampling from distributions with intractable normalizing constants.
Neural Comput. 2013 Aug;25(8):2199-234. doi: 10.1162/NECO_a_00466. Epub 2013 Apr 22.
9
Direct parametric reconstruction from undersampled (k, t)-space data in dynamic contrast enhanced MRI.
Med Image Anal. 2014 Oct;18(7):989-1001. doi: 10.1016/j.media.2014.05.001. Epub 2014 May 24.

引用本文的文献

1
A General Bayesian Functional Spatial Partitioning Method for Multiple Region Discovery Applied to Prostate Cancer MRI.
Bayesian Anal. 2024 Jun;19(2):623-647. doi: 10.1214/23-ba1366. Epub 2024 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验