Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota.
Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota.
Biometrics. 2023 Jun;79(2):604-615. doi: 10.1111/biom.13602. Epub 2021 Dec 8.
Spatial partitioning methods correct for nonstationarity in spatially related data by partitioning the space into regions of local stationarity. Existing spatial partitioning methods can only estimate linear partitioning boundaries. This is inadequate for detecting an arbitrarily shaped anomalous spatial region within a larger area. We propose a novel Bayesian functional spatial partitioning (BFSP) algorithm, which estimates closed curves that act as partitioning boundaries around anomalous regions of data with a distinct distribution or spatial process. Our method utilizes transitions between a fixed Cartesian and moving polar coordinate system to model the smooth boundary curves using functional estimation tools. Using adaptive Metropolis-Hastings, the BFSP algorithm simultaneously estimates the partitioning boundary and the parameters of the spatial distributions within each region. Through simulation we show that our method is robust to shape of the target zone and region-specific spatial processes. We illustrate our method through the detection of prostate cancer lesions using magnetic resonance imaging.
空间分区方法通过将空间划分为局部平稳的区域来纠正空间相关数据中的非平稳性。现有的空间分区方法只能估计线性分区边界。这对于检测较大区域内具有独特分布或空间过程的任意形状异常空间区域是不够的。我们提出了一种新的贝叶斯函数空间分区(BFSP)算法,该算法估计封闭曲线作为具有不同分布或空间过程的异常数据区域周围的分区边界。我们的方法利用固定笛卡尔坐标系和移动极坐标系之间的转换,使用功能估计工具对平滑边界曲线进行建模。使用自适应 Metropolis-Hastings,BFSP 算法同时估计分区边界和每个区域内空间分布的参数。通过仿真,我们表明我们的方法对目标区域的形状和特定区域的空间过程具有稳健性。我们通过使用磁共振成像检测前列腺癌病变来说明我们的方法。