Masotti Maria, Zhang Lin, Metzger Gregory J, Koopmeiners Joseph S
Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, U.S.A.
Division of Biostatistics, University of Minnesota, Minneapolis MN 55455, U.S.A.
Bayesian Anal. 2024 Jun;19(2):623-647. doi: 10.1214/23-ba1366. Epub 2024 Jun 28.
Current protocols to estimate the number, size, and location of cancerous lesions in the prostate using multiparametric magnetic resonance imaging (mpMRI) are highly dependent on reader experience and expertise. Automatic voxel-wise cancer classifiers do not directly provide estimates of number, location, and size of cancerous lesions that are clinically important. Existing spatial partitioning methods estimate linear or piecewise-linear boundaries separating regions of local stationarity in spatially registered data and are inadequate for the application of lesion detection. Frequentist segmentation and clustering methods often require pre-specification of the number of clusters and do not quantify uncertainty. Previously, we developed a novel Bayesian functional spatial partitioning method to estimate the boundary surrounding a single cancerous lesion using data derived from mpMRI. We propose a Bayesian functional spatial partitioning method for multiple lesion detection with an unknown number of lesions. Our method utilizes functional estimation to model the smooth boundary curves surrounding each cancerous lesion. In a Reversible Jump Markov Chain Monte Carlo (RJ-MCMC) framework, we develop novel jump steps to jointly estimate and quantify uncertainty in the number of lesions, their boundaries, and the spatial parameters in each lesion. Through simulation we show that our method is robust to the shape of the lesions, number of lesions, and region-specific spatial processes. We illustrate our method through the detection of prostate cancer lesions using MRI.
目前,使用多参数磁共振成像(mpMRI)来估计前列腺癌性病变的数量、大小和位置的方案高度依赖于阅片者的经验和专业知识。自动体素级癌症分类器并不能直接提供对临床重要的癌性病变的数量、位置和大小的估计。现有的空间分割方法估计的是在空间配准数据中分离局部平稳区域的线性或分段线性边界,不适用于病变检测的应用。频率论分割和聚类方法通常需要预先指定聚类的数量,并且不能量化不确定性。此前,我们开发了一种新颖的贝叶斯功能空间分割方法,使用来自mpMRI的数据来估计单个癌性病变周围的边界。我们提出了一种用于多个病变检测的贝叶斯功能空间分割方法,其中病变数量未知。我们的方法利用功能估计来对每个癌性病变周围的平滑边界曲线进行建模。在可逆跳跃马尔可夫链蒙特卡罗(RJ-MCMC)框架中,我们开发了新颖的跳跃步骤,以联合估计和量化病变数量、它们的边界以及每个病变中的空间参数的不确定性。通过模拟,我们表明我们的方法对病变的形状、病变数量和区域特定的空间过程具有鲁棒性。我们通过使用MRI检测前列腺癌病变来说明我们的方法。