School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea.
Arch Pharm Res. 2021 Dec;44(12):1076-1090. doi: 10.1007/s12272-021-01361-3. Epub 2021 Nov 22.
Meloxicam, a non-steroidal anti-inflammatory drug, is used for the treatment of rheumatoid arthritis and osteoarthritis. Cytochrome P450 (CYP) 2C9 and CYP3A4 are major and minor enzymes involved in the metabolism of meloxicam. Impaired enzyme activity of CYP2C9 variants increases the plasma exposures of meloxicam and the risk of adverse events. The objective of our study is to develop and validate the physiologically based pharmacokinetic (PBPK) model of meloxicam related to CYP2C9 genetic polymorphism using the PK-Sim software. In vitro k of CYP2C9 was optimized in different CYP2C9 genotypes. The demographic and pharmacokinetic dataset for the development of the PBPK model was extracted from two previous clinical pharmacokinetic studies. Thirty-one clinical datasets, representing different dose regimens and demographic characteristics, were utilized to validate the PBPK model. The shapes of simulated plasma concentration-time profiles in each CYP2C9 genotype were visually similar to observed profiles. The predicted exposures (AUC) of meloxicam in CYP2C9*1/3, CYP2C91/13, and CYP2C93/3 genotypes were increased by 1.77-, 2.91-, and 8.35-fold compared to CYP2C91/*1 genotype, respectively. In all datasets for the development and validations, fold errors between predicted and observed pharmacokinetic parameters were within the two-fold error criteria. As a result, the PBPK model was appropriately established and properly described the pharmacokinetics of meloxicam in different CYP2C9 genotypes. This study is expected to contribute to reducing the risk of adverse events of meloxicam through optimization of meloxicam dosing in different CYP2C9 genotypes.
美洛昔康是一种非甾体抗炎药,用于治疗类风湿关节炎和骨关节炎。细胞色素 P450(CYP)2C9 和 CYP3A4 是参与美洛昔康代谢的主要和次要酶。CYP2C9 变体酶活性受损会增加美洛昔康的血浆暴露量,并增加不良反应的风险。本研究的目的是使用 PK-Sim 软件开发和验证与 CYP2C9 遗传多态性相关的美洛昔康基于生理学的药代动力学(PBPK)模型。在不同 CYP2C9 基因型中优化了 CYP2C9 的体外 k 值。用于开发 PBPK 模型的人口统计学和药代动力学数据集从两项先前的临床药代动力学研究中提取。使用 31 个临床数据集,代表不同的剂量方案和人口统计学特征,验证了 PBPK 模型。在每个 CYP2C9 基因型中,模拟的血浆浓度-时间曲线的形状与观察到的曲线在视觉上相似。与 CYP2C9*1/1 基因型相比,CYP2C91/3、CYP2C91/13 和 CYP2C93/*3 基因型中美洛昔康的预测暴露量(AUC)分别增加了 1.77 倍、2.91 倍和 8.35 倍。在开发和验证的所有数据集中,预测和观察药代动力学参数之间的倍数误差均在两倍误差标准范围内。因此,适当建立了 PBPK 模型,并适当描述了不同 CYP2C9 基因型中美洛昔康的药代动力学。本研究有望通过优化不同 CYP2C9 基因型中美洛昔康的剂量来降低美洛昔康不良反应的风险。