Setayeshmehr Kimiya, Hashemi Mahdieh, Ansari Narges
Opt Express. 2021 Oct 11;29(21):32910-32921. doi: 10.1364/OE.438386.
Nowadays, two-dimensional materials such as graphene, phosphorene, and transition metal dichalcogenides (TMDCs) are widely employed in designing photovoltaic devices. Despite their atomically thin (AT) thicknesses, the high absorption of the TMDCs makes them a unique choice in designing solar absorptive heterostructures. In our exploration of finding the most efficient TMDC contacts for generating higher photocurrents, we carefully examined the physics behind the external and internal quantum efficiencies (EQEs and IQEs) of different AT heterostructures at the solar spectrum. By minute examination of the EQEs of the selected TMDC-based heterostructures, we show that the absorption of each consisting TMDC and the gradient of the electronic structure of them at their contact, determine mostly the photocurrent generation efficiency of the solar cells. The promising EQE (IQE) value of 0.5% (1.4%) is achieved in WSe/MoSe contact at the wavelength of 433 nm. In the case of the multilayers of TMDCs, together with the light absorption increase of the multilayers the EQE of the heterostructures generally increases, while the competitive nature of the electronic structure gradient and the absorption makes this increase nonmonotonic. The TMDC-based heterostructures which are investigated in this work, pave a new way in designing miniaturized and efficient optoelectronic devices.
如今,二维材料如石墨烯、磷烯和过渡金属二硫属化物(TMDCs)被广泛应用于光伏器件的设计中。尽管它们具有原子级薄(AT)的厚度,但TMDCs的高吸收率使其成为设计太阳能吸收异质结构的独特选择。在我们探索寻找最有效的TMDC接触以产生更高光电流的过程中,我们仔细研究了不同AT异质结构在太阳光谱下的外部和内部量子效率(EQEs和IQEs)背后的物理原理。通过对所选基于TMDC的异质结构的EQEs进行细致研究,我们发现每个组成TMDC的吸收率及其在接触处电子结构的梯度,在很大程度上决定了太阳能电池的光电流产生效率。在433nm波长下,WSe/MoSe接触实现了0.5%(1.4%)的有前景的EQE(IQE)值。对于TMDCs的多层结构,随着多层结构光吸收的增加,异质结构的EQE通常会增加,然而电子结构梯度和吸收的竞争性质使得这种增加并非单调。这项工作中所研究的基于TMDC的异质结构,为设计小型化高效光电器件开辟了一条新途径。