Suppr超能文献

石墨烯/过渡金属二硫化物异质结构中的电致和光致可调响应。

Electrically and Optically Tunable Responses in Graphene/Transition-Metal-Dichalcogenide Heterostructures.

机构信息

Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR) , 2 Fusionopolis Way, Innovis , Singapore 138634 , Singapore.

Department of Chemistry , National University of Singapore , 3 Science Drive 3 , Singapore 117543 , Singapore.

出版信息

ACS Appl Mater Interfaces. 2018 Dec 19;10(50):44102-44108. doi: 10.1021/acsami.8b12588. Epub 2018 Dec 7.

Abstract

Heterostructures involving layered two-dimensional (2D) transition metal dichalcogenides (TMDCs) are not only fundamentally interesting to explore emerging properties at atomically thin limit, but also technically important to achieve novel optoelectronic devices. However, achieving tunable optoelectronic properties and clarifying interlayer processes (charge transfer, energy transfer) in 2D heterostructures have remained part of the key challenges so far. Here, by fabricating heterostructures of graphene and monolayer TMDCs (n-type MoS and p-type WSe), we demonstrate both electrically and optically tunable responses of the heterostructures, revealing the critical interface processes between graphene and TMDCs. In MoS/graphene heterostructures, electron transfer from MoS to graphene is observed, and gate-tunable interface relaxation induces the electrically controlled photoluminescence (PL), whereas in WSe/graphene heterostructures, electron transfer from graphene to WSe is observed, and the PL is tuned by carrier density, which can be controlled by the gate voltage. The interlayer process can also be modulated by laser intensity, which enables photoinduced doping on graphene and optically tunable electrical characteristics of graphene. Combining the tunable Fermi level of graphene and strong light-matter interaction of monolayer TMDCs, our demonstrations are important for the design of multifunctional and efficient optoelectronic devices with TMDC/graphene heterostructures.

摘要

涉及层状二维(2D)过渡金属二硫属化物(TMDC)的异质结构不仅在原子薄极限下探索新兴性质具有重要的基础意义,而且在实现新型光电设备方面也具有重要的技术意义。然而,到目前为止,实现可调谐的光电特性并阐明 2D 异质结构中的层间过程(电荷转移、能量转移)仍然是关键挑战的一部分。在这里,通过制备石墨烯和单层 TMDC(n 型 MoS 和 p 型 WSe)的异质结构,我们演示了异质结构的电和光可调响应,揭示了石墨烯和 TMDC 之间的关键界面过程。在 MoS/石墨烯异质结构中,观察到电子从 MoS 转移到石墨烯,栅极可调界面弛豫诱导电控制光致发光(PL),而在 WSe/石墨烯异质结构中,观察到电子从石墨烯转移到 WSe,PL 可以通过载流子密度来调节,而载流子密度可以通过栅极电压来控制。层间过程也可以通过激光强度来调制,这使得可以在石墨烯上进行光致掺杂,并实现石墨烯的光可调电特性。结合石墨烯可调谐的费米能级和单层 TMDCs 的强光物质相互作用,我们的演示对于设计具有 TMDC/石墨烯异质结构的多功能和高效光电设备具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验