Houwink Quint, Kalisvaart Dylan, Hung Shih-Te, Cnossen Jelmer, Fan Daniel, Mos Paul, Can Ülkü Arin, Bruschini Claudio, Charbon Edoardo, Smith Carlas S
Opt Express. 2021 Nov 22;29(24):39920-39929. doi: 10.1364/OE.439340.
Single-photon avalanche diode (SPAD) arrays can be used for single-molecule localization microscopy (SMLM) because of their high frame rate and lack of readout noise. SPAD arrays have a binary frame output, which means photon arrivals should be described as a binomial process rather than a Poissonian process. Consequentially, the theoretical minimum uncertainty of the localizations is not accurately predicted by the Poissonian Cramér-Rao lower bound (CRLB). Here, we derive a binomial CRLB and benchmark it using simulated and experimental data. We show that if the expected photon count is larger than one for all pixels within one standard deviation of a Gaussian point spread function, the binomial CRLB gives a 46% higher theoretical uncertainty than the Poissonian CRLB. For typical SMLM photon fluxes, where no saturation occurs, the binomial CRLB predicts the same uncertainty as the Poissonian CRLB. Therefore, the binomial CRLB can be used to predict and benchmark localization uncertainty for SMLM with SPAD arrays for all practical emitter intensities.
单光子雪崩二极管(SPAD)阵列由于其高帧率和无读出噪声,可用于单分子定位显微镜(SMLM)。SPAD阵列具有二进制帧输出,这意味着光子到达应被描述为二项式过程而非泊松过程。因此,定位的理论最小不确定性不能由泊松克拉美罗下界(CRLB)准确预测。在此,我们推导了二项式CRLB,并使用模拟和实验数据对其进行基准测试。我们表明,如果在高斯点扩散函数的一个标准差范围内所有像素的预期光子计数大于1,二项式CRLB给出的理论不确定性比泊松CRLB高46%。对于典型的无饱和现象的SMLM光子通量,二项式CRLB预测的不确定性与泊松CRLB相同。因此,对于所有实际的发射体强度,二项式CRLB可用于预测和基准测试使用SPAD阵列的SMLM的定位不确定性。