Research center for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia.
Department of Chemistry, King Khalid University, Abha, Saudi Arabia.
J Biomol Struct Dyn. 2023 Jan;41(1):280-297. doi: 10.1080/07391102.2021.2005682. Epub 2021 Nov 23.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which causes COVID-19 disease has been exponentially increasing throughout the world. The mortality rate is increasing gradually as effective treatment is unavailable to date. based screening for novel testable hypotheses on SARS-CoV-2 M protein to discover the potential lead drug candidate is an emerging area along with the discovery of a vaccine. Administration of NO-releasing agents, NO inducers or the NO gas itself may be useful as therapeutics in the treatment of SARS-CoV-2. In the present study, a 3D structure of SARS-CoV-2 M protein was used for the rational setting of inhibitors to the binding pocket of enzyme which proposed that phenyl furoxan derivative gets efficiently dock in the target pocket. Molecular docking and molecular dynamics simulations helped to investigate possible effective inhibitor candidates bound to SARS-CoV-2 M substrate binding pocket. Molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculations revealed energetic contributions of active site residues of M in binding with most stable proposed NO donor heterocyclic vasodilator inhibitor molecules. Furthermore, principal component analysis (PCA) showed that the NO donor heterocyclic inhibitor molecules , , and was strongly bound to catalytic core of SARS-CoV-2 M protein, limiting its movement to form stable complex as like control. Thus, overall investigations revealed that 5-oxopiperazine-2-carboxylic acid coupled furoxan derivatives was found to be key pharmacophore in drug design for the treatment of SARS-CoV-2, a global pandemic disease with a dual mechanism of action as NO donor and a worthwhile ligand to act as SARS-CoV-2 M protein inhibitor.Communicated by Ramaswamy H. Sarma.
严重急性呼吸系统综合症冠状病毒 2(SARS-CoV-2)可引发 COVID-19 疾病,目前在全球范围内呈指数级增长。由于目前尚无有效的治疗方法,死亡率正逐渐上升。针对 SARS-CoV-2 M 蛋白的新型可测试假说进行基于筛选,以发现潜在的先导药物候选物,这是一个新兴领域,同时也在探索疫苗。作为治疗 SARS-CoV-2 的方法,给予一氧化氮供体、一氧化氮诱导剂或一氧化氮气体本身可能是有用的。在本研究中,使用 SARS-CoV-2 M 蛋白的 3D 结构来合理设置对酶结合口袋的抑制剂,提出苯呋喃甲酰衍生物可以有效地进入目标口袋。分子对接和分子动力学模拟有助于研究与 SARS-CoV-2 M 底物结合口袋结合的可能有效的抑制剂候选物。分子力学泊松-玻尔兹曼表面面积(MM/PBSA)计算揭示了 M 中活性位点残基与最稳定的拟议的 NO 供体杂环血管扩张抑制剂分子结合的能量贡献。此外,主成分分析(PCA)表明,NO 供体杂环抑制剂分子 、 、 和 与 SARS-CoV-2 M 蛋白的催化核心强烈结合,限制其运动以形成稳定的复合物,就像对照一样。因此,总体研究表明,5-氧代哌嗪-2-羧酸偶联呋喃甲酰衍生物被发现是治疗 SARS-CoV-2 的药物设计中的关键药效团,SARS-CoV-2 是一种全球性的大流行病,具有作为一氧化氮供体的双重作用机制,是一种有价值的配体,可以作为 SARS-CoV-2 M 蛋白抑制剂。由 Ramaswamy H. Sarma 传达。