Division of Cardiac Anesthesiology (Sun), University of Ottawa Heart Institute, Ottawa, Ont.; ICES Central (Sun, Chu, Tam, Wang, Fang, Austin, Tusevljak, Lee), Toronto, Ont.; School of Epidemiology and Public Health (Sun), University of Ottawa, Ottawa, Ont.; Sunnybrook Health Sciences Centre (Tam); University Health Network and Peter Munk Cardiac Centre (Feindel, Ouzounian, Lee); Departments of Cardiac Surgery (Tam, Feindel, Ouzounian), Physical Therapy (Chu), Surgery (Feindel), Cardiology (Lee), University of Toronto, Toronto, Ont.; Institute for Health Policy, Management and Evaluation (Austin), University of Toronto, Toronto, Ont.; CorHealth Ontario (Oakes, Alexopoulos), Toronto, Ont.
CMAJ. 2021 Nov 22;193(46):E1757-E1765. doi: 10.1503/cmaj.202901.
Coronary artery bypass grafting (CABG) and surgical aortic valve replacement (AVR) are the 2 most common cardiac surgery procedures in North America. We derived and externally validated clinical models to estimate the likelihood of death within 30 days of CABG, AVR or combined CABG + AVR.
We obtained data from the CorHealth Ontario Cardiac Registry and several linked population health administrative databases from Ontario, Canada. We derived multiple logistic regression models from all adult patients who underwent CABG, AVR or combined CABG + AVR from April 2017 to March 2019, and validated them in 2 temporally distinct cohorts (April 2015 to March 2017 and April 2019 to March 2020).
The derivation cohorts included 13 435 patients who underwent CABG (30-d mortality 1.73%), 1970 patients who underwent AVR (30-d mortality 1.68%) and 1510 patients who underwent combined CABG + AVR (30-d mortality 3.05%). The final models for predicting 30-day mortality included 15 variables for patients undergoing CABG, 5 variables for patients undergoing AVR and 5 variables for patients undergoing combined CABG + AVR. Model discrimination was excellent for the CABG (c-statistic 0.888, optimism-corrected 0.866) AVR (c-statistic 0.850, optimism-corrected 0.762) and CABG + AVR (c-statistic 0.844, optimism-corrected 0.776) models, with similar results in the validation cohorts.
Our models, leveraging readily available, multidimensional data sources, computed accurate risk-adjusted 30-day mortality rates for CABG, AVR and combined CABG + AVR, with discrimination comparable to more complex American and European models. The ability to accurately predict perioperative mortality rates for these procedures will be valuable for quality improvement initiatives across institutions.
冠状动脉旁路移植术(CABG)和心脏主动脉瓣置换术(AVR)是北美最常见的两种心脏外科手术。我们构建并外部验证了预测 CABG、AVR 或 CABG+AVR 术后 30 天内死亡概率的临床模型。
我们从加拿大安大略省的 CorHealth 安大略心脏登记处和多个相关的人口健康行政数据库中获取数据。我们从 2017 年 4 月至 2019 年 3 月期间所有接受 CABG、AVR 或 CABG+AVR 手术的成年患者中获得了多项逻辑回归模型,并在两个时间上不同的队列(2015 年 4 月至 2017 年 3 月和 2019 年 4 月至 2020 年 3 月)中进行了验证。
在推导队列中,包括 13435 例接受 CABG 手术的患者(30 天死亡率为 1.73%)、1970 例接受 AVR 手术的患者(30 天死亡率为 1.68%)和 1510 例接受 CABG+AVR 联合手术的患者(30 天死亡率为 3.05%)。预测 30 天死亡率的最终模型包括 15 个接受 CABG 手术的患者变量、5 个接受 AVR 手术的患者变量和 5 个接受 CABG+AVR 联合手术的患者变量。CABG 手术(C 统计量为 0.888,经校正后为 0.866)、AVR 手术(C 统计量为 0.850,经校正后为 0.762)和 CABG+AVR 手术(C 统计量为 0.844,经校正后为 0.776)模型的区分度均非常好,验证队列中的结果也类似。
我们的模型利用了现成的多维数据源,计算了 CABG、AVR 和 CABG+AVR 手术的准确风险调整 30 天死亡率,其区分度与更复杂的美国和欧洲模型相当。这些手术的围手术期死亡率的准确预测能力将对机构间的质量改进举措具有重要价值。