Suppr超能文献

利用梯度提升机和深度学习技术进行雨水花园渗透速率建模。

Rain garden infiltration rate modeling using gradient boosting machine and deep learning techniques.

机构信息

Department of Civil Engineering, NIT Kurukshetra, Kurukshetra, India E-mail:

出版信息

Water Sci Technol. 2021 Nov;84(9):2366-2379. doi: 10.2166/wst.2021.444.

Abstract

Rain garden is effective in reducing storm water runoff, whose efficiency depends upon several parameters such as soil type, vegetation and meteorological factors. Evaluation of rain gardens has been done by various researchers. However, knowledge for sound design of rain gardens is still very limited, particularly the accurate modeling of infiltration rate and how much it differs from infiltration of natural ground surface. The present study uses experimentally observed infiltration rate of rain gardens with different types of vegetation (grass, candytuft, marigold and daisy with different plant densities) and flow conditions. After that, modeling has been done by the popular infiltration model i.e. Philip's model (which is valid for natural ground surface) and soft computing tools viz. Gradient Boosting Machine (GBM) and Deep Learning (DL). Results suggest a promising performance (in terms of CC, RMSE, MAE, MSE and NSE) by GBM and DL in comparison to the relation proposed by Philip's model (1957). Most of the values predicted by both GBM and DL are within scatter limits of ±5%, whereas the values by Philips model are within the range of ±25% error lines and even outside. GBM performs better than DL as the values of the correlation coefficients and Nash-Sutcliffe model efficiency (NSE) coefficient are the highest and the root mean square error is the lowest. The results of the study will be useful in selection of plant type and its density in the rain garden of the urban area.

摘要

雨水花园在减少雨水径流方面非常有效,其效率取决于土壤类型、植被和气象因素等多个参数。已经有许多研究人员对雨水花园进行了评估。然而,对于雨水花园的合理设计,我们的知识仍然非常有限,特别是对入渗率的准确建模以及它与自然地面入渗的差异。本研究使用不同植被类型(草、嚏根草、万寿菊和雏菊,具有不同的植物密度)和水流条件下的雨水花园实测入渗率进行研究。之后,使用流行的入渗模型,即菲利普模型(适用于自然地面)和软计算工具,即梯度提升机(GBM)和深度学习(DL)进行建模。结果表明,GBM 和 DL 的表现(在 CC、RMSE、MAE、MSE 和 NSE 方面)比菲利普模型(1957 年)提出的关系要好。GBM 和 DL 预测的大多数值都在±5%的散点图范围内,而菲利普模型的值在±25%误差线范围内,甚至超出了该范围。GBM 的表现优于 DL,因为相关系数和纳什-苏特克里夫模型效率(NSE)系数的值最高,而均方根误差最低。这项研究的结果将有助于在城市地区的雨水花园中选择植物类型及其密度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验