Department of Physics, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395 007, India.
Sir P T Science College, Modasa, Gujarat, 383 315, India.
J Mol Model. 2021 Nov 23;27(12):358. doi: 10.1007/s00894-021-04965-0.
Using the Qiang-Dong proper quantization rule (PQR) and the supersymmetric quantum mechanics approach, we obtain the eigenspectrum of the energy and momentum for time-independent and time-dependent Hulth'en-screened cosine Kratzer potentials. For the suggested time-independent Hulthén-screened cosine Kratzer potential (HSCKP), we solve the Schrödinger equation in D dimensions. The Feinberg-Horodecki equation for time-dependent Hulth'en-screened cosine Kratzer potential (tHSCKP) also solves. To address the inverse square term in the time-independent and time-dependent equations, we employed the Greene-Aldrich approximation approach. We were able to extract time-independent and time-dependent potentials, as well as their accompanying energy and momentum spectra. In three-dimensional space, we estimate the rotational vibrational (RV) energy spectrum for many homodimers (H, I, O) and heterodimers (MnH, ScN, LiH, HCl). We also use the recently introduced formula approach to obtain the relevant eigen function. We also calculate momentum spectra for the dimers MnH and ScN. The method is compared to prior methodologies for accuracy and validity using numerical data for heterodimer LiH, HCl and homodimer I, O, H. The calculated energy and momentum spectra are tabulated and analyzed.
使用强东正则量子规则(PQR)和超对称量子力学方法,我们得到了时不变和时变 Hulthén 屏蔽余弦 Kratzer 势的能量和动量本征谱。对于所提出的时不变 Hulthén 屏蔽余弦 Kratzer 势(HSCKP),我们在 D 维中求解薛定谔方程。还解决了时变 Hulthén 屏蔽余弦 Kratzer 势(tHSCKP)的 Feinberg-Horodecki 方程。为了解决时不变和时变方程中的平方反比项,我们采用了 Greene-Aldrich 近似方法。我们能够提取时不变和时变势,以及它们伴随的能量和动量谱。在三维空间中,我们估计了许多同二聚体(H、I、O)和异二聚体(MnH、ScN、LiH、HCl)的转动振动(RV)能谱。我们还使用最近引入的公式方法来获得相关的本征函数。我们还计算了 MnH 和 ScN 二聚体的动量谱。该方法通过使用异二聚体 LiH、HCl 和同二聚体 I、O、H 的数值数据来比较其与先前方法的准确性和有效性。计算得到的能量和动量谱列于表中并进行了分析。