Pöll Gisela, Pilsl Michael, Griesenbeck Joachim, Tschochner Herbert, Milkereit Philipp
Chair of Biochemistry III, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany.
Structural Biochemistry Unit, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany.
PLoS One. 2021 Nov 23;16(11):e0252497. doi: 10.1371/journal.pone.0252497. eCollection 2021.
In yeast and human cells many of the ribosomal proteins (r-proteins) are required for the stabilisation and productive processing of rRNA precursors. Functional coupling of r-protein assembly with the stabilisation and maturation of subunit precursors potentially promotes the production of ribosomes with defined composition. To further decipher mechanisms of such an intrinsic quality control pathway we analysed here the contribution of three yeast large ribosomal subunit r-proteins rpL2 (uL2), rpL25 (uL23) and rpL34 (eL34) for intermediate nuclear subunit folding steps. Structure models obtained from single particle cryo-electron microscopy analyses provided evidence for specific and hierarchic effects on the stable positioning and remodelling of large ribosomal subunit domains. Based on these structural and previous biochemical data we discuss possible mechanisms of r-protein dependent hierarchic domain arrangement and the resulting impact on the stability of misassembled subunits.
在酵母和人类细胞中,许多核糖体蛋白(r蛋白)对于rRNA前体的稳定和有效加工是必需的。r蛋白组装与亚基前体的稳定和成熟之间的功能偶联可能促进具有特定组成的核糖体的产生。为了进一步解读这种内在质量控制途径的机制,我们在此分析了三种酵母大核糖体亚基r蛋白rpL2(uL2)、rpL25(uL23)和rpL34(eL34)对中间核亚基折叠步骤的贡献。从单颗粒冷冻电子显微镜分析获得的结构模型为大核糖体亚基结构域的稳定定位和重塑提供了特定和层次效应的证据。基于这些结构和先前的生化数据,我们讨论了r蛋白依赖性层次结构域排列的可能机制以及对错误组装亚基稳定性的影响。