Athinoula A. Martinos Center for Biomedical Imaging.
Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, 149 Thirteenth Street, Charlestown, MA 02129, USA.
Angew Chem Int Ed Engl. 2022 Jan 17;61(3):e202114019. doi: 10.1002/anie.202114019. Epub 2021 Dec 2.
Fe complexes in aqueous solution can exist as discrete mononuclear species or multinuclear magnetically coupled species. Stimuli-driven change to Fe speciation represents a powerful mechanistic basis for magnetic resonance sensor technology, but ligand design strategies to exert precision control of aqueous Fe magnetostructural properties are entirely underexplored. In pursuit of this objective, we rationally designed a ligand to strongly favor a dinuclear μ-oxo-bridged and antiferromagnetically coupled complex, but which undergoes carboxylesterase mediated transformation to a mononuclear high-spin Fe chelate resulting in substantial T -relaxivity increase. The data communicated demonstrate proof of concept for a novel and effective strategy to exert biochemical control over aqueous Fe magnetic, structural, and relaxometric properties.
水溶液中的 Fe 配合物可以以离散的单核物种或多核磁耦合物种的形式存在。Fe 形态的刺激驱动变化代表了磁共振传感器技术的强大机制基础,但对精确控制水合 Fe 磁结构性质的配体设计策略仍完全未被探索。为了实现这一目标,我们合理设计了一种配体,使其强烈有利于双核 μ-氧桥联和反铁磁耦合配合物,但该配体通过羧酸酯酶介导的转化为单核高自旋 Fe 螯合物,导致 T1 弛豫率显著增加。所传达的数据证明了一种新颖有效的策略的概念验证,该策略可对水合 Fe 的磁性、结构和弛豫性质进行生化控制。