Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland.
Math Biosci Eng. 2021 Sep 1;18(6):7490-7505. doi: 10.3934/mbe.2021370.
Calibration of Discrete Element Method (DEM) models is an iterative process of adjusting input parameters such that the macroscopic results of simulations and experiments are similar. Therefore, selecting appropriate input parameters of a model effectively is crucial for the efficient use of the method. Despite the growing popularity of DEM, there is still an ongoing need for an efficient method for identifying contact law parameters. Commonly used trial and error procedures are very time-consuming and unpractical, especially in the case of models with many parameters to calibrate. It seems that machine learning may offer a new approach to that problem. This research aims to apply supervised machine learning to figure out the dependencies between specific microscopic and macroscopic parameters. More than 6000 DEM simulations of uniaxial compression tests gathered the data for two algorithms - Multiple Linear Regression and Random Forest. Promising results with an accuracy of over 99% give good hope for finding a universal relation between input and output parameters (for a specific DEM implementation) and reducing the number of simulations required for the calibration procedure. Another pertinent question concerns the size of the DEM models used during calibration based on the uniaxial compression test. It has been proven that calibration of certain parameters can be done on smaller samples, where the critical threshold is around 30% of the radius of the original model.
离散元法(DEM)模型的校准是一个调整输入参数的迭代过程,以使模拟和实验的宏观结果相似。因此,有效地选择模型的适当输入参数对于该方法的有效使用至关重要。尽管 DEM 的应用越来越广泛,但仍需要一种有效的方法来识别接触律参数。常用的试错程序非常耗时且不切实际,特别是在需要校准的参数很多的情况下。机器学习似乎可以为该问题提供一种新的方法。本研究旨在应用监督机器学习来找出特定微观和宏观参数之间的依赖性。通过对 6000 多次单轴压缩试验的 DEM 模拟,收集了两种算法——多元线性回归和随机森林的数据。超过 99%的准确率带来了很好的希望,可以找到输入和输出参数(针对特定的 DEM 实现)之间的通用关系,并减少校准过程所需的模拟数量。另一个相关问题是基于单轴压缩试验的校准过程中使用的 DEM 模型的大小。已经证明,某些参数的校准可以在较小的样本上进行,其中关键阈值约为原始模型半径的 30%。