Suppr超能文献

博弈论和进化优化方法在计算环境中的资源分配问题中的应用:综述。

Game theory and evolutionary optimization approaches applied to resource allocation problems in computing environments: A survey.

机构信息

Future Technology Research Center, College of Future, National Yunlin University of Science and Technology 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan.

Faculty of Engineering, Department of Computer Engineering, University of Birjand, Birjand, Iran.

出版信息

Math Biosci Eng. 2021 Oct 25;18(6):9190-9232. doi: 10.3934/mbe.2021453.

Abstract

Today's intelligent computing environments, including the Internet of Things (IoT), Cloud Computing (CC), Fog Computing (FC), and Edge Computing (EC), allow many organizations worldwide to optimize their resource allocation regarding the quality of service and energy consumption. Due to the acute conditions of utilizing resources by users and the real-time nature of the data, a comprehensive and integrated computing environment has not yet provided a robust and reliable capability for proper resource allocation. Although traditional resource allocation approaches in a low-capacity hardware resource system are efficient for small-scale resource providers, for a complex system in the conditions of dynamic computing resources and fierce competition in obtaining resources, they cannot develop and adaptively manage the conditions optimally. To optimize the resource allocation with minimal delay, low energy consumption, minimum computational complexity, high scalability, and better resource utilization efficiency, CC/FC/EC/IoT-based computing architectures should be designed intelligently. Therefore, the objective of this research is a comprehensive survey on resource allocation problems using computational intelligence-based evolutionary optimization and mathematical game theory approaches in different computing environments according to the latest scientific research achievements.

摘要

今天的智能计算环境,包括物联网(IoT)、云计算(CC)、雾计算(FC)和边缘计算(EC),使全球许多组织能够优化其服务质量和能源消耗方面的资源分配。由于用户对资源的利用条件苛刻,以及数据的实时性,一个全面和集成的计算环境尚未为正确的资源分配提供强大可靠的能力。尽管在低容量硬件资源系统中,传统的资源分配方法对于小规模的资源提供者来说是有效的,但对于在动态计算资源和激烈的资源竞争条件下的复杂系统来说,它们无法进行开发和自适应管理。为了以最小的延迟、低能耗、最小的计算复杂性、高可扩展性和更好的资源利用效率来优化资源分配,应该基于 CC/FC/EC/IoT 设计智能计算架构。因此,本研究的目标是根据最新的科学研究成果,全面调查在不同计算环境中使用基于计算智能的进化优化和数学博弈论方法的资源分配问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验