Kalejaiye Titilola D, Bhattacharya Rohan, Burt Morgan A, Travieso Tatianna, Okafor Arinze E, Mou Xingrui, Blasi Maria, Musah Samira
bioRxiv. 2021 Nov 17:2021.11.16.468893. doi: 10.1101/2021.11.16.468893.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the Coronavirus disease 2019 (COVID-19), which was declared a pandemic by the World Health Organization (WHO) in March 2020. The disease has caused more than 5.1 million deaths worldwide. While cells in the respiratory system are frequently the initial target for SARS-CoV-2, clinical studies suggest that COVID-19 can become a multi-organ disease in the most severe cases. Still, the direct affinity of SARS-CoV-2 for cells in other organs such as the kidneys, which are often affected in severe COVID-19, remains poorly understood.
In this study, we employed a human induced pluripotent stem (iPS) cell-derived model to investigate the affinity of SARS-CoV-2 for kidney glomerular podocytes. We studied uptake of the live SARS-CoV-2 virus as well as pseudotyped viral particles by human iPS cell derived podocytes using qPCR, western blot, and immunofluorescence. Global gene expression and qPCR analyses revealed that human iPS cell-derived podocytes express many host factor genes (including ACE2, BSG/CD147, PLS3, ACTR3, DOCK7, TMPRSS2, CTSL CD209, and CD33) associated with SARS-CoV-2 binding and viral processing.
Infection of podocytes with live SARS-CoV-2 or spike-pseudotyped lentiviral particles revealed viral uptake by the cells at low Multiplicity of Infection (MOI of 0.01) as confirmed by RNA quantification and immunofluorescence studies. Our results also indicate that direct infection of human iPS cell-derived podocytes by SARS-CoV-2 virus can cause cell death and podocyte foot process retraction, a hallmark of podocytopathies and progressive glomerular diseases including collapsing glomerulopathy observed in patients with severe COVID-19 disease. Additionally, antibody blocking experiments identified BSG/CD147 and ACE2 receptors as key mediators of spike binding activity in human iPS cell-derived podocytes.
These results show that SARS-CoV-2 can infect kidney glomerular podocytes . These results also show that the uptake of SARS-CoV-2 by kidney podocytes occurs via multiple binding interactions and partners, which may underlie the high affinity of SARS-CoV-2 for kidney tissues. This stem cell-derived model is potentially useful for kidney-specific antiviral drug screening and mechanistic studies of COVID-19 organotropism.
Many patients with COVID19 disease exhibit multiorgan complications, suggesting that SARS-CoV-2 infection can extend beyond the respiratory system. Acute kidney injury is a common COVID-19 complication contributing to increased morbidity and mortality. Still, SARS-Cov-2 affinity for specialized kidney cells remain less clear. By leveraging our protocol for stem cell differentiation, we show that SARS-CoV-2 can directly infect kidney glomerular podocytes by using multiple Spike-binding proteins including ACE2 and BSG/CD147. Our results also indicate that infection by SARS-CoV-2 virus can cause podocyte cell death and foot process effacement, a hallmark of podocytopathies including collapsing glomerulopathy observed in patients with severe COVID-19 disease. This stem cell-derived model is potentially useful for kidney-specific antiviral drug screening and mechanistic studies of COVID-19 organotropism.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引发2019冠状病毒病(COVID-19),该疾病于2020年3月被世界卫生组织(WHO)宣布为大流行病。此疾病已在全球造成超过510万人死亡。虽然呼吸系统中的细胞常常是SARS-CoV-2的初始靶标,但临床研究表明,在最严重的病例中,COVID-19可发展为多器官疾病。不过,SARS-CoV-2对其他器官(如肾脏,在严重COVID-19中常受影响)细胞的直接亲和力仍知之甚少。
在本研究中,我们采用人诱导多能干细胞(iPS)衍生模型来研究SARS-CoV-2对肾小球足细胞的亲和力。我们使用定量聚合酶链反应(qPCR)、蛋白质免疫印迹法和免疫荧光法,研究了人iPS细胞衍生的足细胞对活SARS-CoV-2病毒以及假型病毒颗粒的摄取情况。全基因表达和qPCR分析表明,人iPS细胞衍生的足细胞表达许多与SARS-CoV-2结合及病毒加工相关的宿主因子基因(包括血管紧张素转换酶2(ACE2)、基底侧转运蛋白/CD147(BSG/CD147)、肌动蛋白结合蛋白3(PLS3)、丝状肌动蛋白结合蛋白3(ACTR3)、鸟嘌呤核苷酸交换因子7(DOCK7)、跨膜丝氨酸蛋白酶2(TMPRSS2)、组织蛋白酶L(CTSL)、树突状细胞特异性细胞间黏附分子3抓取非整合素(CD209)和髓系细胞表面抗原CD33)。
用活SARS-CoV-2或刺突假型慢病毒颗粒感染足细胞,RNA定量和免疫荧光研究证实,在低感染复数(MOI为0.01)时细胞摄取了病毒。我们的结果还表明,SARS-CoV-2病毒直接感染人iPS细胞衍生的足细胞可导致细胞死亡和足细胞足突回缩,这是足细胞病和进行性肾小球疾病(包括在严重COVID-19疾病患者中观察到的塌陷性肾小球病)的一个标志。此外,抗体阻断实验确定BSG/CD147和ACE2受体是人iPS细胞衍生足细胞中刺突结合活性的关键介质。
这些结果表明,SARS-CoV-2可感染肾小球足细胞。这些结果还表明,肾足细胞对SARS-CoV-2的摄取是通过多种结合相互作用和伙伴发生的,这可能是SARS-CoV-2对肾组织具有高亲和力的基础。这种干细胞衍生模型可能有助于肾脏特异性抗病毒药物筛选以及COVID-19器官嗜性的机制研究。
许多COVID-19疾病患者表现出多器官并发症,这表明SARS-CoV-2感染可超出呼吸系统。急性肾损伤是常见的COVID-19并发症,会导致发病率和死亡率增加。不过,SARS-CoV-2对肾脏特化细胞的亲和力仍不太清楚。通过利用我们的干细胞分化方案,我们表明SARS-CoV-2可通过使用包括ACE2和BSG/CD147在内的多种刺突结合蛋白直接感染肾小球足细胞。我们的结果还表明,SARS-CoV-2病毒感染可导致足细胞死亡和足突消失,这是足细胞病(包括在严重COVID-19疾病患者中观察到的塌陷性肾小球病)的一个标志。这种干细胞衍生模型可能有助于肾脏特异性抗病毒药物筛选以及COVID-19器官嗜性的机制研究。