Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain.
Microbiology Department, Alicante University General Hospital, Alicante Institute of Sanitary and Biomedical Research (ISABIAL), Alicante, Spain.
mSphere. 2021 Dec 22;6(6):e0083621. doi: 10.1128/mSphere.00836-21. Epub 2021 Nov 24.
Pseudomonas aeruginosa is an opportunistic human pathogen and a major cause of nosocomial infections. The global spread of carbapenem-resistant strains is growing rapidly and has become a major public health challenge. Imipenem-relebactam (I/R) is a novel carbapenem-beta-lactamase inhibitor combination that can overcome carbapenem resistance. In this study, we aimed to understand the mechanism underlying resistance to imipenem and imipenem-relebactam. For this purpose, we performed a genomic comparison of 40 new clinical P. aeruginosa strains with different antibiotic sensitivity patterns as well as the presence/absence of carbapenemases. Results indicated the presence of a reduced flexible genome (15% total) mostly represented by phages and defense mechanisms against them, showing an important role in evolution and pathogenicity. We found a high diversity of antibiotic resistance genes grouped in small clusters mobilized via integrative and conjugative elements and facilitated by the high homologous recombination detected. Ortholog genes were found in several pathogenic strains from distantly related taxa in different mobile elements with a global distribution. The microdiversity found in those strains without carbapenemases did not reveal a clear pattern that could be associated with carbapenem resistance, suggesting multiple mechanisms of resistance in the core genome. Our results provide new insight into the dynamics and high genomic plasticity by which clinical strains of P. aeruginosa acquire resistance. This knowledge can be applied to other multidrug-resistant microbes to create predictive frameworks for assessing common molecular mechanisms of antibiotic resistance and integrated into new strategies for their prevention. The growing emergence and spread of carbapenem-resistant pathogens worldwide exacerbate the clinical challenge of treating these infections. Given the importance of carbapenems for the treatment of infections caused by Pseudomonas aeruginosa, this study aimed to investigate the underlying genomic properties of the clinical isolates that exhibited resistance to imipenem and imipenem-relebactam. This information will enhance our ability to forecast traits of resistant strains and design reliable treatments against this important threat. Our results provide new insight into the dynamics and high genomic plasticity by which clinical strains of P. aeruginosa acquire resistance as well as offers a methodology that can be applied to many other opportunistic pathogens with broad antibiotic resistance.
铜绿假单胞菌是一种机会性人类病原体,也是医院感染的主要原因。全球碳青霉烯类耐药菌株的传播迅速增长,已成为主要的公共卫生挑战。亚胺培南-雷巴他定(I/R)是一种新型的碳青霉烯-β-内酰胺酶抑制剂合剂,可克服碳青霉烯类耐药性。在这项研究中,我们旨在了解对亚胺培南和亚胺培南-雷巴他定产生耐药性的机制。为此,我们对 40 株具有不同抗生素敏感性模式和碳青霉烯酶存在/不存在的新型临床铜绿假单胞菌菌株进行了基因组比较。结果表明,存在一个较小的(总基因组的 15%)灵活基因组,主要由噬菌体和针对它们的防御机制组成,在进化和致病性方面发挥着重要作用。我们发现了抗生素耐药基因的多样性,这些基因被分组在小簇中,通过整合和共轭元件进行移动,并通过检测到的高同源重组得到促进。在不同移动元件中的远缘分类群的几种致病性菌株中发现了同源基因,具有全球分布。在那些没有碳青霉烯酶的菌株中发现的微多样性没有揭示出与碳青霉烯类耐药性相关的明确模式,这表明在核心基因组中存在多种耐药机制。我们的研究结果提供了有关临床铜绿假单胞菌获得耐药性的动态和高基因组可塑性的新见解。这些知识可应用于其他多药耐药微生物,以建立评估抗生素耐药常见分子机制的预测框架,并将其整合到预防这些机制的新策略中。 碳青霉烯类耐药病原体在全球范围内的不断出现和传播加剧了治疗这些感染的临床挑战。鉴于碳青霉烯类药物对铜绿假单胞菌引起的感染的治疗重要性,本研究旨在研究对亚胺培南和亚胺培南-雷巴他定表现出耐药性的临床分离株的潜在基因组特性。这将提高我们预测耐药菌株特征的能力,并设计针对这一重要威胁的可靠治疗方法。我们的研究结果提供了有关临床铜绿假单胞菌获得耐药性的动态和高基因组可塑性的新见解,并提供了一种可应用于具有广泛抗生素耐药性的许多其他机会性病原体的方法。