Suppr超能文献

Cdk1 的多部位磷酸化启动延迟的负反馈以控制有丝分裂转录。

Multisite phosphorylation by Cdk1 initiates delayed negative feedback to control mitotic transcription.

机构信息

Department of Physiology, University of California, San Francisco, San Francisco, USA.

Institute of Technology, University of Tartu, Tartu, Estonia.

出版信息

Curr Biol. 2022 Jan 10;32(1):256-263.e4. doi: 10.1016/j.cub.2021.11.001. Epub 2021 Nov 23.

Abstract

Cell-cycle progression is driven by the phosphorylation of cyclin-dependent kinase (Cdk) substrates. The order of substrate phosphorylation depends in part on the general rise in Cdk activity during the cell cycle, together with variations in substrate docking to sites on associated cyclin and Cks subunits. Many substrates are modified at multiple sites to provide more complex regulation. Here, we describe an elegant regulatory circuit based on multisite phosphorylation of Ndd1, a transcriptional co-activator of budding yeast genes required for mitotic progression. As cells enter mitosis, Ndd1 phosphorylation by Cdk1 is known to promote mitotic cyclin (CLB2) gene transcription, resulting in positive feedback. Consistent with these findings, we show that low Cdk1 activity promotes CLB2 expression at mitotic entry. We also find, however, that when high Cdk1 activity accumulates in a mitotic arrest, CLB2 expression is inhibited. Inhibition is accompanied by Ndd1 degradation, and we present evidence that degradation is triggered by multisite Ndd1 phosphorylation by high mitotic Cdk1-Clb2 activity. Complete Ndd1 phosphorylation by Clb2-Cdk1-Cks1 requires the phosphothreonine-binding site of Cks1, as well as a recently identified phosphate-binding pocket on the cyclin Clb2. We therefore propose that initial phosphorylation by Cdk1 primes Ndd1 for delayed secondary phosphorylation at suboptimal sites that promote degradation. Together, our results suggest that rising levels of mitotic Cdk1 activity act at multiple phosphorylation sites on Ndd1, first triggering rapid positive feedback and then promoting delayed negative feedback, resulting in a pulse of mitotic gene expression.

摘要

细胞周期的推进是由细胞周期依赖性激酶(Cdk)底物的磷酸化驱动的。底物磷酸化的顺序部分取决于细胞周期中 Cdk 活性的普遍升高,以及与相关细胞周期蛋白和 Cks 亚基上的位点结合的底物的变化。许多底物在多个位点被修饰,以提供更复杂的调控。在这里,我们描述了一个基于芽殖酵母基因转录共激活因子 Ndd1 的多位点磷酸化的精巧调控回路,该基因对于有丝分裂的进行是必需的。当细胞进入有丝分裂时,已知 Cdk1 对 Ndd1 的磷酸化促进有丝分裂周期蛋白(CLB2)基因的转录,从而产生正反馈。与这些发现一致,我们表明低 Cdk1 活性在有丝分裂进入时促进 CLB2 的表达。然而,我们还发现,当高 Cdk1 活性在有丝分裂停滞中积累时,CLB2 的表达被抑制。抑制伴随着 Ndd1 的降解,我们提出的证据表明,降解是由高有丝分裂 Cdk1-Clb2 活性对 Ndd1 的多位点磷酸化触发的。Clb2-Cdk1-Cks1 完全磷酸化 Ndd1 需要 Cks1 的磷酸苏氨酸结合位点,以及最近在细胞周期蛋白 Clb2 上发现的磷酸结合口袋。因此,我们提出,Cdk1 的初始磷酸化使 Ndd1 能够在亚最佳位点进行延迟的二次磷酸化,从而促进降解。总之,我们的结果表明,有丝分裂 Cdk1 活性的升高水平作用于 Ndd1 上的多个磷酸化位点,首先触发快速的正反馈,然后促进延迟的负反馈,从而导致有丝分裂基因表达的脉冲。

相似文献

1
Multisite phosphorylation by Cdk1 initiates delayed negative feedback to control mitotic transcription.
Curr Biol. 2022 Jan 10;32(1):256-263.e4. doi: 10.1016/j.cub.2021.11.001. Epub 2021 Nov 23.
2
Ndd1 turnover by SCF(Grr1) is inhibited by the DNA damage checkpoint in Saccharomyces cerevisiae.
PLoS Genet. 2015 Apr 20;11(4):e1005162. doi: 10.1371/journal.pgen.1005162. eCollection 2015 Apr.
4
The Mck1 GSK-3 kinase inhibits the activity of Clb2-Cdk1 post-nuclear division.
Cell Cycle. 2012 Sep 15;11(18):3421-32. doi: 10.4161/cc.21731. Epub 2012 Aug 23.
8
Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates.
Nature. 2005 Mar 3;434(7029):104-8. doi: 10.1038/nature03329.
10
Multisite phosphorylation networks as signal processors for Cdk1.
Nat Struct Mol Biol. 2013 Dec;20(12):1415-24. doi: 10.1038/nsmb.2706. Epub 2013 Nov 3.

引用本文的文献

1
Phosphate-binding pocket on cyclin B governs CDK substrate phosphorylation and mitotic timing.
Nat Commun. 2025 May 8;16(1):4281. doi: 10.1038/s41467-025-59700-7.
2
Positively charged specificity site in cyclin B1 is essential for mitotic fidelity.
Nat Commun. 2025 Jan 20;16(1):853. doi: 10.1038/s41467-024-55669-x.
3
A phosphate-binding pocket in cyclin B3 is essential for XErp1/Emi2 degradation in meiosis I.
EMBO Rep. 2025 Feb;26(3):768-790. doi: 10.1038/s44319-024-00347-8. Epub 2025 Jan 2.
4
Phosphate-binding pocket on cyclin B governs CDK substrate phosphorylation and mitotic timing.
bioRxiv. 2025 Apr 2:2024.02.28.582599. doi: 10.1101/2024.02.28.582599.
5
Bioinformatics-based Identification of Ferroptosis-related Genes and their Diagnostic Value in Gestational Diabetes Mellitus.
Endocr Metab Immune Disord Drug Targets. 2024;24(14):1611-1621. doi: 10.2174/0118715303275367240103102801.
6
Regulation of centrosome size by the cell-cycle oscillator in Drosophila embryos.
EMBO J. 2024 Feb;43(3):414-436. doi: 10.1038/s44318-023-00022-z. Epub 2024 Jan 17.
7
CDK signaling via nonconventional CDK phosphorylation sites.
Mol Biol Cell. 2023 Nov 1;34(12):pe5. doi: 10.1091/mbc.E22-06-0196.
8
The molecular mechanisms of human separase regulation.
Biochem Soc Trans. 2023 Jun 28;51(3):1225-1233. doi: 10.1042/BST20221400.

本文引用的文献

1
Structural basis of human separase regulation by securin and CDK1-cyclin B1.
Nature. 2021 Aug;596(7870):138-142. doi: 10.1038/s41586-021-03764-0. Epub 2021 Jul 21.
3
Detection of Multisite Phosphorylation of Intrinsically Disordered Proteins Using Phos-tag SDS-PAGE.
Methods Mol Biol. 2020;2141:779-792. doi: 10.1007/978-1-0716-0524-0_40.
5
Multisite phosphorylation code of CDK.
Nat Struct Mol Biol. 2019 Jul;26(7):649-658. doi: 10.1038/s41594-019-0256-4. Epub 2019 Jul 1.
6
Cyclin-Specific Docking Mechanisms Reveal the Complexity of M-CDK Function in the Cell Cycle.
Mol Cell. 2019 Jul 11;75(1):76-89.e3. doi: 10.1016/j.molcel.2019.04.026. Epub 2019 May 14.
7
A Clb/Cdk1-mediated regulation of Fkh2 synchronizes expression in the budding yeast cell cycle.
NPJ Syst Biol Appl. 2017 Mar 6;3:7. doi: 10.1038/s41540-017-0008-1. eCollection 2017.
8
A comparative study of the degradation of yeast cyclins Cln1 and Cln2.
FEBS Open Bio. 2016 Dec 14;7(1):74-87. doi: 10.1002/2211-5463.12157. eCollection 2017 Jan.
9
CDK Substrate Phosphorylation and Ordering the Cell Cycle.
Cell. 2016 Dec 15;167(7):1750-1761.e16. doi: 10.1016/j.cell.2016.11.034.
10
Ndd1 turnover by SCF(Grr1) is inhibited by the DNA damage checkpoint in Saccharomyces cerevisiae.
PLoS Genet. 2015 Apr 20;11(4):e1005162. doi: 10.1371/journal.pgen.1005162. eCollection 2015 Apr.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验