Suppr超能文献

人骨髓间充质干细胞成骨分化过程中核内介观粘弹性变化。

Intranuclear mesoscale viscoelastic changes during osteoblastic differentiation of human mesenchymal stem cells.

机构信息

Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Hachioji, Japan.

出版信息

FASEB J. 2021 Dec;35(12):e22071. doi: 10.1096/fj.202100536RR.

Abstract

Cell nuclei behave as viscoelastic materials. Dynamic regulation of the viscoelastic properties of nuclei in living cells is crucial for diverse biological and biophysical processes, specifically for intranuclear mesoscale viscoelasticity, through modulation of the efficiency of force propagation to the nucleoplasm and gene expression patterns. However, how the intranuclear mesoscale viscoelasticity of stem cells changes with differentiation is unclear and so is its biological significance. Here, we quantified the changes in intranuclear mesoscale viscoelasticity during osteoblastic differentiation of human mesenchymal stem cells. This analysis revealed that the intranuclear region is a viscoelastic solid, probably with a higher efficiency of force transmission that results in high sensitivity to mechanical signals in the early stages of osteoblastic differentiation. The intranuclear region was noted to alter to a viscoelastic liquid with a lower efficiency, which is responsible for the robustness of gene expression toward terminal differentiation. Additionally, evaluation of changes in the mesoscale viscoelasticity due to chromatin decondensation and correlation between the mesoscale viscoelasticity and local DNA density suggested that size of gap and flexibility of chromatin meshwork structures, which are modulated depending on chromatin condensation state, determine mesoscale viscoelasticity, with various rates of contribution in different differentiation stages. Given that chromatin within the nucleus condenses into heterochromatin as stem cells adopt a specific lineage by restricting transcription, viscoelasticity is perhaps a key factor in cooperative regulation of the nuclear mechanosensitivity and gene expression pattern for stem cell differentiation.

摘要

细胞核表现为粘弹性材料。活细胞中细胞核粘弹性的动态调节对于多种生物和生物物理过程至关重要,特别是对于核内介观粘弹性,通过调节力向核质的传递效率和基因表达模式。然而,干细胞的核内介观粘弹性如何随分化而变化尚不清楚,其生物学意义也不清楚。在这里,我们定量分析了人骨髓间充质干细胞成骨分化过程中核内介观粘弹性的变化。该分析表明,核内区是一种粘弹性固体,可能具有更高的力传递效率,从而在成骨分化的早期对机械信号高度敏感。核内区被认为转变为粘弹性液体,其效率较低,这是基因表达对终末分化具有稳健性的原因。此外,由于染色质解凝聚引起的介观粘弹性变化的评估以及介观粘弹性与局部 DNA 密度之间的相关性表明,染色质网孔结构的间隙大小和灵活性取决于染色质凝聚状态,决定了介观粘弹性,在不同的分化阶段以不同的速率贡献。鉴于细胞核内的染色质在干细胞通过限制转录而采用特定谱系时凝聚成异染色质,粘弹性可能是核机械敏感性和干细胞分化基因表达模式协同调节的关键因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验