Suppr超能文献

旋节线调制固溶体提供了一种高强度且韧性好的难熔高熵合金。

Spinodal-modulated solid solution delivers a strong and ductile refractory high-entropy alloy.

作者信息

An Zibing, Mao Shengcheng, Yang Tao, Liu Chain Tsuan, Zhang Bin, Ma Evan, Zhou Hao, Zhang Ze, Wang Lihua, Han Xiaodong

机构信息

Beijing Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China.

出版信息

Mater Horiz. 2021 Mar 1;8(3):948-955. doi: 10.1039/d0mh01341b. Epub 2020 Dec 16.

Abstract

Body-centered-cubic (BCC) refractory high-entropy alloys (RHEAs) are being actively pursued due to their potential to outperform existing superalloys at elevated temperatures. One bottleneck problem, however, is that these RHEAs lack tensile ductility and, hence, processability at room temperature. The strategy previously invoked to sustain ductility in high-strength HEAs is to manage dislocation movements via incorporating dispersed obstacles; this, however, may also have embrittlement ramifications. Here, a new strategy is demonstrated to achieve ductile BCC HfNbTiV, via decomposing the BCC arrangement (β phase) into a β(BCC) + β*(BCC) arrangement via spinodal decomposition, producing chemical composition modulations and, more importantly, elastic strain on a length scale of a few tens of nanometers. The periodically spaced β*, with large lattice distortion, is particularly potent in heightening the ruggedness of the terrain for the passage of dislocations. This makes the motion of dislocations sluggish, causing a traffic jam and cross-slip, facilitating dislocation interactions, multiplication, and accumulation. Wavy dislocations form walls that entangle with slip bands, promoting strain hardening and delocalizing plastic strain. A simultaneous combination of high yield strength (1.1 GPa) and tensile strain to failure (28%) is achieved; these values are among the best reported so far for refractory high-entropy alloys.

摘要

体心立方(BCC)难熔高熵合金(RHEA)因其在高温下性能可能优于现有超级合金而受到积极研究。然而,一个瓶颈问题是这些RHEA缺乏拉伸延展性,因此在室温下缺乏可加工性。之前在高强度高熵合金中维持延展性所采用的策略是通过引入分散的障碍物来控制位错运动;然而,这也可能产生脆化影响。在此,展示了一种新策略,通过旋节分解将BCC结构(β相)分解为β(BCC)+β*(BCC)结构,实现具有延展性的BCC HfNbTiV,产生化学成分调制,更重要的是在几十纳米的长度尺度上产生弹性应变。具有大晶格畸变的周期性间隔的β*,在增加位错通过的地形崎岖度方面特别有效。这使得位错运动迟缓,导致交通堵塞和交滑移,促进位错相互作用、增殖和积累。波浪状位错形成与滑移带缠结的壁,促进应变硬化并使塑性应变局部化。实现了高屈服强度(1.1 GPa)和拉伸断裂应变(28%)的同时结合;这些值是迄今为止难熔高熵合金中报道的最佳值之一。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验