Suppr超能文献

通过增材制造得到强韧且延展的纳米层状高熵合金。

Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing.

机构信息

Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, USA.

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.

出版信息

Nature. 2022 Aug;608(7921):62-68. doi: 10.1038/s41586-022-04914-8. Epub 2022 Aug 3.

Abstract

Additive manufacturing produces net-shaped components layer by layer for engineering applications. The additive manufacture of metal alloys by laser powder bed fusion (L-PBF) involves large temperature gradients and rapid cooling, which enables microstructural refinement at the nanoscale to achieve high strength. However, high-strength nanostructured alloys produced by laser additive manufacturing often have limited ductility. Here we use L-PBF to print dual-phase nanolamellar high-entropy alloys (HEAs) of AlCoCrFeNi that exhibit a combination of a high yield strength of about 1.3 gigapascals and a large uniform elongation of about 14 per cent, which surpasses those of other state-of-the-art additively manufactured metal alloys. The high yield strength stems from the strong strengthening effects of the dual-phase structures that consist of alternating face-centred cubic and body-centred cubic nanolamellae; the body-centred cubic nanolamellae exhibit higher strengths and higher hardening rates than the face-centred cubic nanolamellae. The large tensile ductility arises owing to the high work-hardening capability of the as-printed hierarchical microstructures in the form of dual-phase nanolamellae embedded in microscale eutectic colonies, which have nearly random orientations to promote isotropic mechanical properties. The mechanistic insights into the deformation behaviour of additively manufactured HEAs have broad implications for the development of hierarchical, dual- and multi-phase, nanostructured alloys with exceptional mechanical properties.

摘要

增材制造逐层生产用于工程应用的净成型部件。通过激光粉末床熔合(L-PBF)制造金属合金的增材制造涉及到较大的温度梯度和快速冷却,这使得纳米尺度的微观结构细化,从而实现高强度。然而,激光增材制造生产的高强度纳米结构合金通常具有有限的延展性。在这里,我们使用 L-PBF 打印具有面心立方和体心立方纳米层交替的双相纳米层状高熵合金(HEA)AlCoCrFeNi,其屈服强度约为 1.3 吉帕斯卡,均匀伸长率约为 14%,超过了其他最先进的增材制造金属合金。高屈服强度源于由交替的面心立方和体心立方纳米层组成的双相结构的强强化效应;体心立方纳米层比面心立方纳米层具有更高的强度和更高的硬化率。大的拉伸延展性源于打印的双相纳米层状分层微观结构的高加工硬化能力,其形式为微尺度共晶组织中的双相纳米层,其取向几乎随机,以促进各向同性的力学性能。对增材制造 HEA 变形行为的机制研究对具有优异力学性能的分层、双相和多相、纳米结构合金的发展具有广泛的意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验