Levitsky Artem, Schneider Sebastian Alexander, Rabkin Eugen, Toney Michael F, Frey Gitti L
Department of Material Science and Engineering, Technion Israel Institute of Technology, Haifa 3200003, Israel.
Mater Horiz. 2021 Apr 1;8(4):1272-1285. doi: 10.1039/d0mh01805h. Epub 2021 Feb 15.
The performance of organic solar cells (OSC) critically depends on the morphology of the active layer. After deposition, the active layer is in a metastable state and prone to changes that lead to cell degradation. Here, a high efficiency fullerene:polymer blend is used as a model system to follow the temperature-induced morphology evolution through a series of thermal annealing treatments. Electron microscopy analysis of the nano-scale phase evolution during the early stages of thermal annealing revealed that spinodal decomposition, i.e. spontaneous phase separation with no nucleation stage, is possibly responsible for the formation of a fine scale bicontinuous structure. In the later evolution stages, large polycrystalline fullerene aggregates are formed. Optical microscopy and scattering revealed that aggregate-growth follows the Johnson-Mehl-Avrami-Kolmogorov equation indicating a heterogeneous transformation process, i.e., through nucleation and growth. These two mechanisms, spinodal decomposition vs. nucleation and growth, are mutually exclusive and their co-existence is surprising. This unexpected observation is resolved by introducing a metastable monotectic phase diagram and showing that the morphology evolution goes through two distinct and consecutive transformation processes where spinodal decomposition of the amorphous donor:acceptor blend is followed by nucleation and growth of crystalline acceptor aggregates. Finally, this unified thermodynamic and kinetic mechanism allows us to correlate the morphology evolution with OSC degradation during thermal annealing.
有机太阳能电池(OSC)的性能严重依赖于活性层的形态。沉积后,活性层处于亚稳态,容易发生导致电池性能退化的变化。在此,使用一种高效的富勒烯:聚合物共混物作为模型体系,通过一系列热退火处理来追踪温度诱导的形态演变。对热退火早期阶段纳米尺度相演变的电子显微镜分析表明,旋节线分解,即无成核阶段的自发相分离,可能是形成精细尺度双连续结构的原因。在后期演变阶段,形成了大的多晶富勒烯聚集体。光学显微镜和散射分析表明,聚集体生长遵循约翰逊 - 梅耳 - 阿夫拉米 - 科尔莫戈罗夫方程,这表明是一个非均匀转变过程,即通过成核和生长。这两种机制,旋节线分解与成核和生长,是相互排斥的,它们的共存令人惊讶。通过引入亚稳单溶体相图并表明形态演变经历两个不同且连续的转变过程来解决这一意外观察结果,其中非晶态供体:受体共混物的旋节线分解之后是结晶受体聚集体的成核和生长。最后,这种统一的热力学和动力学机制使我们能够将形态演变与热退火过程中的OSC降解联系起来。