Suppr超能文献

基于多参数优化的遥感数据监测黄河三角洲不同深度土壤盐渍化及其时空变化

Monitoring soil salinization and its spatiotemporal variation at different depths across the Yellow River Delta based on remote sensing data with multi-parameter optimization.

作者信息

Cheng Tiantian, Zhang Jiahua, Zhang Sha, Bai Yun, Wang Jingwen, Li Shuaishuai, Javid Tehseen, Meng Xianglei, Sharma Til Prasad Pangali

机构信息

Remote Sensing Information and Digital Earth Center, College of Computer Science and Technology, Qingdao University, Qingdao, 266071, China.

Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China.

出版信息

Environ Sci Pollut Res Int. 2022 Apr;29(16):24269-24285. doi: 10.1007/s11356-021-17677-y. Epub 2021 Nov 25.

Abstract

Soil salinization is recognized as a key issue negatively affecting agricultural productivity and wetland ecology. It is necessary to develop effective methods for monitoring the spatiotemporal distribution of soil salinity at a regional scale. In this study, we proposed an optimized remote sensing-based model for detecting soil salinity in different depths across the Yellow River Delta (YRD), China. A multi-dimensional model was built for mapping soil salinity, in which five types of predictive factors derived from Landsat satellite images were exacted and tested, 94 in-situ measured soil salinity samples with depths of 30-40 cm and 90-100 cm were collected to establish and validate the predicting model result. By comparing multiple linear regression (MLR) and partial least squares regression (PLSR) models with considering the correlation between predictive factors and soil salinity, we established the optimized prediction model which integrated the multi-parameter (including SWIR1, SI9, MSAVI, Albedo, and SDI) optimization approach to detect soil salinization in the YRD from 2003 to 2018. The results indicated that the estimates of soil salinity by the optimized prediction model were in good agreement with the measured soil salinity. The accuracy of the PLSR model performed better than that of the MLR model, with the R of 0.642, RMSE of 0.283, and MAE of 0.213 at 30-40 cm depth, and with the R of 0.450, RMSE of 0.276, and MAE of 0.220 at 90-100 cm depth. From 2003 to 2018, the soil salinity showed a distinct spatial heterogeneity. The soil salinization level of the coastal shoreline was higher; in contrast, lower soil salinization level occurred in the central YRD. In the last 15 years, the soil salinity at depth of 30-40 cm experienced a decreased trend of fluctuating, while the soil salinity at depth of 90-100 cm showed fluctuating increasing trend.

摘要

土壤盐渍化被认为是对农业生产力和湿地生态产生负面影响的关键问题。有必要开发有效的方法来监测区域尺度上土壤盐分的时空分布。在本研究中,我们提出了一种基于遥感的优化模型,用于检测中国黄河三角洲不同深度的土壤盐分。构建了一个用于绘制土壤盐分图的多维模型,从中提取并测试了从Landsat卫星图像中获取的五种类型的预测因子,收集了94个深度为30 - 40厘米和90 - 100厘米的原位测量土壤盐分样本,以建立和验证预测模型结果。通过比较考虑预测因子与土壤盐分之间相关性的多元线性回归(MLR)和偏最小二乘回归(PLSR)模型,我们建立了优化预测模型,该模型集成了多参数(包括短波红外1、SI9、修正型土壤调整植被指数、反照率和盐分差异指数)优化方法,以检测2003年至2018年黄河三角洲的土壤盐渍化情况。结果表明,优化预测模型对土壤盐分的估计与实测土壤盐分高度吻合。PLSR模型的精度优于MLR模型,在30 - 40厘米深度处,R为0.642,均方根误差为0.283,平均绝对误差为0.213;在90 - 100厘米深度处,R为0.450,均方根误差为0.276,平均绝对误差为0.220。2003年至2018年,土壤盐分呈现出明显的空间异质性。海岸沿线的土壤盐渍化程度较高;相比之下,黄河三角洲中部的土壤盐渍化程度较低。在过去15年中,30 - 40厘米深度的土壤盐分呈波动下降趋势,而90 - 100厘米深度的土壤盐分呈波动上升趋势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验