Suppr超能文献

利用混合机器学习和遥感技术预测越南湄公河三角洲槟知省土壤盐度。

Soil salinity prediction using hybrid machine learning and remote sensing in Ben Tre province on Vietnam's Mekong River Delta.

机构信息

Faculty of Geography, VNU University of Science, Vietnam National University, Hanoi, Vietnam.

Thuyloi University, 175 Tay Son, Dong Da, Hanoi, Vietnam.

出版信息

Environ Sci Pollut Res Int. 2023 Jun;30(29):74340-74357. doi: 10.1007/s11356-023-27516-x. Epub 2023 May 19.

Abstract

Soil salinization is considered one of the disasters that have significant effects on agricultural activities in many parts of the world, particularly in the context of climate change and sea level rise. This problem has become increasingly essential and severe in the Mekong River Delta of Vietnam. Therefore, soil salinity monitoring and assessment are critical to building appropriate strategies to develop agricultural activities. This study aims to develop a low-cost method based on machine learning and remote sensing to map soil salinity in Ben Tre province, which is located in Vietnam's Mekong River Delta. This objective was achieved by using six machine learning algorithms, including Xgboost (XGR), sparrow search algorithm (SSA), bird swarm algorithm (BSA), moth search algorithm (MSA), Harris hawk optimization (HHO), grasshopper optimization algorithm (GOA), particle swarm optimization algorithm (PSO), and 43 factors extracted from remote sensing images. Various indices were used, namely, root mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination (R) to estimate the efficiency of the prediction models. The results show that six optimization algorithms successfully improved XGR model performance with an R value of more than 0.98. Among the proposed models, the XGR-HHO model was better than the other models with a value of R of 0.99 and a value of RMSE of 0.051, by XGR-GOA (R = 0.931, RMSE = 0.055), XGR-MSA (R = 0.928, RMSE = 0.06), XGR-BSA (R = 0.926, RMSE = 0.062), XGR-SSA (R = 0.917, 0.07), XGR-PSO (R = 0.916, RMSE = 0.08), XGR (R = 0.867, RMSE = 0.1), CatBoost (R = 0.78, RMSE = 0.12), and RF (R = 0.75, RMSE = 0.19), respectively. These proposed models have surpassed the reference models (CatBoost and random forest). The results indicated that the soils in the eastern areas of Ben Tre province are more saline than in the western areas. The results of this study highlighted the effectiveness of using hybrid machine learning and remote sensing in soil salinity monitoring. The finding of this study provides essential tools to support farmers and policymakers in selecting appropriate crop types in the context of climate change to ensure food security.

摘要

土壤盐渍化被认为是世界上许多地区农业活动的重大灾害之一,特别是在气候变化和海平面上升的背景下。这个问题在越南湄公河三角洲的芹苴省变得越来越重要和严重。因此,土壤盐度监测和评估对于制定适当的农业发展战略至关重要。本研究旨在开发一种基于机器学习和遥感的低成本方法,以绘制位于越南湄公河三角洲的芹苴省的土壤盐度图。通过使用包括 Xgboost (XGR)、麻雀搜索算法 (SSA)、蜂群算法 (BSA)、 moth 搜索算法 (MSA)、Harris 鹰优化算法 (HHO)、草蜢优化算法 (GOA)、粒子群优化算法 (PSO) 在内的六种机器学习算法以及从遥感图像中提取的 43 个因素,实现了这一目标。采用均方根误差 (RMSE)、平均绝对误差 (MAE) 和决定系数 (R) 等多种指标来评估预测模型的效率。结果表明,六种优化算法成功地提高了 XGR 模型的性能,R 值均超过 0.98。在所提出的模型中,XGR-HHO 模型的性能优于其他模型,R 值为 0.99,RMSE 值为 0.051,而 XGR-GOA (R = 0.931,RMSE = 0.055)、XGR-MSA (R = 0.928,RMSE = 0.06)、XGR-BSA (R = 0.926,RMSE = 0.062)、XGR-SSA (R = 0.917,RMSE = 0.07)、XGR-PSO (R = 0.916,RMSE = 0.08)、XGR (R = 0.867,RMSE = 0.1)、CatBoost (R = 0.78,RMSE = 0.12) 和 RF (R = 0.75,RMSE = 0.19)。这些提出的模型均优于参考模型(CatBoost 和随机森林)。研究结果表明,芹苴省东部地区的土壤比西部地区更咸。本研究结果强调了混合机器学习和遥感在土壤盐度监测中的有效性。这项研究的发现为农民和决策者在气候变化背景下选择适宜的作物类型提供了必要的工具,以确保粮食安全。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验