Suppr超能文献

基于光谱指数的土壤重金属估算方法的发展:分数阶导数预处理与吸收机制的结合。

Development of a soil heavy metal estimation method based on a spectral index: Combining fractional-order derivative pretreatment and the absorption mechanism.

机构信息

Key Laboratory of Land Environment and Disaster Monitoring of MNR, China University of Mining and Technology, Xuzhou 221116, China.

Shanghai Institute of Satellite Engineering, Shanghai 200240, China.

出版信息

Sci Total Environ. 2022 Mar 20;813:151882. doi: 10.1016/j.scitotenv.2021.151882. Epub 2021 Nov 23.

Abstract

Visible and near-infrared (Vis-NIR) reflectance is an effective way to estimate soil heavy metal content. In this study, in order to magnify the spectral information of the soil heavy metals and solve the collinearity and redundancy of hyperspectral datasets, we aimed to explore the potential of the fractional-order derivative (FOD) spectral pretreatment method and the band combination algorithm in soil heavy metal estimation. A total of 120 soil samples were collected in Xuzhou city, Jiangsu province, China, and their heavy metal contents and spectra were measured. The FOD (intervals of 0.25, range of 0-2) and a new three-band spectral index which take into account the electronic transition of metal ions in the visible region and organic matter and clay minerals in the near-infrared region were utilized for the spectral pretreatment and the selection of characteristic bands, respectively. FOD with an order of 0.75 exhibited the best model performance for estimating Cr and Zn, yielding R values of 0.74 and 0.81, respectively. As regards Pb, the highest estimation accuracy was achieved with the 0.5-order reflectance, yielding R values of 0.56. The three-band spectral indices with the best performance were then combined for a better estimation. To improve the estimation accuracy and generalization, partial least squares (PLS), support vector machine (SVM), random forest (RF), ridge regression (RR), XGBoost and extreme learning machine (ELM) were used to estimate the heavy metals by incorporating multiple spectral indices, and it was found that ELM outperformed other counterparts (the highest R = 0.77 for Cr, the highest R = 0.86 for Zn, the highest R = 0.63 for Pb). The main spectral absorption mechanisms and modes of heavy metals were also analyzed. This estimation method combining FOD and a three-band index will provide a reference to estimate soil heavy metals using Vis-NIR spectra over a large scale.

摘要

可见近红外(Vis-NIR)反射率是估算土壤重金属含量的有效方法。在这项研究中,为了放大土壤重金属的光谱信息并解决高光谱数据集的共线性和冗余问题,我们旨在探索分数阶导数(FOD)光谱预处理方法和波段组合算法在土壤重金属估算中的潜力。共采集了江苏省徐州市 120 个土壤样本,测量了它们的重金属含量和光谱。分别利用 FOD(间隔为 0.25,范围为 0-2)和一个新的三波段光谱指数来进行光谱预处理和特征波段的选择,该指数考虑了可见区域金属离子的电子跃迁以及近红外区域的有机物和粘土矿物。对于 Cr 和 Zn 的估算,阶数为 0.75 的 FOD 表现出最佳的模型性能,R 值分别为 0.74 和 0.81。对于 Pb,最佳的估算精度是采用 0.5 阶反射率,R 值为 0.56。然后将性能最佳的三波段光谱指数进行组合,以实现更好的估算。为了提高估算精度和泛化能力,使用偏最小二乘法(PLS)、支持向量机(SVM)、随机森林(RF)、岭回归(RR)、XGBoost 和极限学习机(ELM)结合多个光谱指数来估算重金属,发现 ELM 优于其他方法(Cr 的最高 R 值为 0.77,Zn 的最高 R 值为 0.86,Pb 的最高 R 值为 0.63)。还分析了重金属的主要光谱吸收机制和模式。这种结合 FOD 和三波段指数的估算方法将为利用 Vis-NIR 光谱大规模估算土壤重金属提供参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验