Nakajima Tomohiko, Tateno Hiroyuki, Miseki Yugo, Tsuchiya Tetsuo, Sayama Kazuhiro
Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
Energy Process Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba West 5, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
ACS Appl Mater Interfaces. 2021 Dec 8;13(48):57132-57141. doi: 10.1021/acsami.1c16777. Epub 2021 Nov 25.
In the quest for efficient use of solar energy to produce high-value-added chemicals, we first achieved the photoelectrochemical (PEC) diketonization of naphthalene, using a BiVO/WO photoanode, to obtain naphthoquinone, an important pharmaceutical raw material with excellent efficiency by solar energy conversion. In the electrochemical (EC) reaction using F-doped SnO (FTO) substrates and a 0.5 M HSO HO-acetone (60 vol %) mixed solution containing 5 mM naphthalene, we produced a small amount of naphthoquinone evolution in the dark. However, naphthoquinone (η)'s Faradic efficiency and its evolution rate at 1.7 V were only 28.5% and 0.48 μmol·cm·h, respectively. The PEC reaction using a WO photoanode had very low efficiency for naphthalene diketonization, with low η and evolution rate values at 1.1 V of 0.3% and 0.039 μmol·cm·h, respectively. In contrast, the BiVO/WO photoanode strongly enhanced the PEC reaction, and the η and evolution rates at 1.1 V were boosted up to 37.5% and 4.7 μmol·cm·h, respectively. The evolution rate of the PEC reaction in the BiVO/WO photoanode was 10 times higher than that of the EC reaction with the FTO substrate regardless of the very low bias voltage. This result suggests that the BiVO-based photoanode was very efficient for the selective oxidation of naphthalene even in acid media because of the acetone-mixed electrolyte's anti-photocorrosion effect and the multilayering of WO and BiVO. At a naphthalene concentration of 20 mM, the naphthoquinone evolution rate reached its maximum value of 7.1 μmol·cm·h. Although η tended to decrease with the increase in the electric charge, it reached 100% at a low bias voltage of 0.7 V. An intensity-modulated photocurrent spectroscopy analysis indicated the rate constant of charge transfer at the photoanode surface to the naphthalene molecules was strongly enhanced at a low bias voltage of 0.7-1.1 V, resulting in the high η value. The acid-resistant BiVO/WO photoanode functioned in acetone-mixed electrolytes enabled the realization of a new PEC oxidation reaction driven by solar energy to produce high-value-added pharmaceutical raw materials.
在寻求高效利用太阳能生产高附加值化学品的过程中,我们首先利用BiVO₄/WO₃光阳极实现了萘的光电化学(PEC)二酮化反应,以获得萘醌,这是一种重要的医药原料,通过太阳能转化具有优异的效率。在使用氟掺杂氧化锡(FTO)基板和含有5 mM萘的0.5 M H₂SO₄ - H₂O - 丙酮(60体积%)混合溶液的电化学(EC)反应中,我们在黑暗中产生了少量的萘醌析出。然而,萘醌的法拉第效率(η)及其在1.7 V时的析出速率分别仅为28.5%和0.48 μmol·cm⁻²·h⁻¹。使用WO₃光阳极的PEC反应对萘二酮化反应的效率非常低,在1.1 V时的η和析出速率值分别为0.3%和0.039 μmol·cm⁻²·h⁻¹。相比之下,BiVO₄/WO₃光阳极显著增强了PEC反应,在1.1 V时的η和析出速率分别提高到37.5%和4.7 μmol·cm⁻²·h⁻¹。无论偏置电压非常低,BiVO₄/WO₃光阳极中PEC反应的析出速率都比使用FTO基板的EC反应高10倍。这一结果表明,基于BiVO₄的光阳极即使在酸性介质中对萘的选择性氧化也非常有效,这是由于丙酮混合电解质的抗光腐蚀作用以及WO₃和BiVO₄的多层结构。在萘浓度为20 mM时,萘醌析出速率达到最大值7.1 μmol·cm⁻²·h⁻¹。尽管η随着电荷量的增加而趋于降低,但在0.7 V的低偏置电压下达到了100%。强度调制光电流光谱分析表明,在0.7 - 1.1 V的低偏置电压下,光阳极表面向萘分子的电荷转移速率常数显著增强,从而导致了高η值。耐酸的BiVO₄/WO₃光阳极在丙酮混合电解质中起作用,使得通过太阳能驱动实现一种新的PEC氧化反应以生产高附加值医药原料成为可能。