Suppr超能文献

通过集中设施扩大 cryoEM 的使用范围。

Broadening access to cryoEM through centralized facilities.

机构信息

Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA.

Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.

出版信息

Trends Biochem Sci. 2022 Feb;47(2):106-116. doi: 10.1016/j.tibs.2021.10.007.

Abstract

Cryogenic electron microscopy (cryoEM) uses images of frozen hydrated biological specimens to produce macromolecular structures, opening up previously inaccessible levels of biological organization to high-resolution structural analysis. CryoEM has the potential for broad impact in biomedical research, including basic cell, molecular, and structural biology, and increasingly in drug discovery and vaccine development. Recent advances have led to the expansion of molecular and cellular structure determination at an exponential rate. National and regional centers have emerged to support this growth by increasing the accessibility of cryoEM throughout the biomedical research community. Through cooperation and synergy, these centers form a network of resources that accelerate the adoption of best practices for access and training and establish sustainable workflows to build future research capacity.

摘要

低温电子显微镜(cryoEM)使用冷冻水合生物样本的图像来产生大分子结构,将以前无法进入的生物组织层次推向高分辨率结构分析。cryoEM 在生物医学研究中具有广泛的影响,包括基础细胞、分子和结构生物学,并且在药物发现和疫苗开发中越来越重要。最近的进展导致分子和细胞结构的测定呈指数级扩展。国家和地区中心的出现,通过增加 cryoEM 在整个生物医学研究界的可及性来支持这一增长。通过合作和协同作用,这些中心形成了一个资源网络,加速了最佳访问和培训实践的采用,并建立了可持续的工作流程,以建立未来的研究能力。

相似文献

1
Broadening access to cryoEM through centralized facilities.
Trends Biochem Sci. 2022 Feb;47(2):106-116. doi: 10.1016/j.tibs.2021.10.007.
3
CryoEM-based hybrid modeling approaches for structure determination.
Curr Opin Microbiol. 2018 Jun;43:14-23. doi: 10.1016/j.mib.2017.10.002. Epub 2017 Nov 4.
4
Towards a mechanistic understanding of cellular processes by cryoEM.
Curr Opin Struct Biol. 2019 Oct;58:149-158. doi: 10.1016/j.sbi.2019.06.008. Epub 2019 Jul 23.
5
Big data in cryoEM: automated collection, processing and accessibility of EM data.
Curr Opin Microbiol. 2018 Jun;43:1-8. doi: 10.1016/j.mib.2017.10.005. Epub 2017 Oct 31.
7
Best practices for managing large CryoEM facilities.
J Struct Biol. 2017 Sep;199(3):225-236. doi: 10.1016/j.jsb.2017.07.011. Epub 2017 Aug 4.
8
CryoEM analysis of small plant biocatalysts at sub-2 Å resolution.
Acta Crystallogr D Struct Biol. 2022 Jan 1;78(Pt 1):113-123. doi: 10.1107/S205979832101216X.
9
Reducing cryoEM file storage using lossy image formats.
J Struct Biol. 2019 Jul 1;207(1):49-55. doi: 10.1016/j.jsb.2019.04.013. Epub 2019 May 21.
10
Ab initio modeling of the herpesvirus VP26 core domain assessed by CryoEM density.
PLoS Comput Biol. 2006 Oct 27;2(10):e146. doi: 10.1371/journal.pcbi.0020146. Epub 2006 Sep 27.

引用本文的文献

1
The big chill: Growth of structural biology with cryo-electron tomography.
QRB Discov. 2024 Dec 13;5:e10. doi: 10.1017/qrd.2024.10. eCollection 2024.
2
Applications of microscopy and small angle scattering techniques for the characterisation of supramolecular gels.
Beilstein J Org Chem. 2024 Oct 16;20:2608-2634. doi: 10.3762/bjoc.20.220. eCollection 2024.
3
Recent advances in infectious disease research using cryo-electron tomography.
Front Mol Biosci. 2024 Jan 15;10:1296941. doi: 10.3389/fmolb.2023.1296941. eCollection 2023.
4
Scaling up cryo-EM for biology and chemistry: The journey from niche technology to mainstream method.
Structure. 2023 Dec 7;31(12):1487-1498. doi: 10.1016/j.str.2023.09.009. Epub 2023 Oct 10.
5
Structural insights into the HNF4 biology.
Front Endocrinol (Lausanne). 2023 Jun 19;14:1197063. doi: 10.3389/fendo.2023.1197063. eCollection 2023.
7
Big data in contemporary electron microscopy: challenges and opportunities in data transfer, compute and management.
Histochem Cell Biol. 2023 Sep;160(3):169-192. doi: 10.1007/s00418-023-02191-8. Epub 2023 Apr 13.
8
Editorial: Methods in structural biology: Cryo-electron microscopy.
Front Mol Biosci. 2022 Nov 10;9:1041386. doi: 10.3389/fmolb.2022.1041386. eCollection 2022.
9
Practices for running a research-oriented shared cryo-EM facility.
Front Mol Biosci. 2022 Sep 15;9:960940. doi: 10.3389/fmolb.2022.960940. eCollection 2022.

本文引用的文献

1
Cryo-EM performance testing of hardware and data acquisition strategies.
Microscopy (Oxf). 2021 Nov 24;70(6):487-497. doi: 10.1093/jmicro/dfab016.
2
Modular basis for potent SARS-CoV-2 neutralization by a prevalent VH1-2-derived antibody class.
Cell Rep. 2021 Apr 6;35(1):108950. doi: 10.1016/j.celrep.2021.108950. Epub 2021 Mar 19.
3
Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.5 Å in cells.
Nat Methods. 2021 Feb;18(2):186-193. doi: 10.1038/s41592-020-01054-7. Epub 2021 Feb 4.
4
Characterization of the SARS-CoV-2 S Protein: Biophysical, Biochemical, Structural, and Antigenic Analysis.
ACS Omega. 2020 Dec 21;6(1):85-102. doi: 10.1021/acsomega.0c03512. eCollection 2021 Jan 12.
5
Setting up and operating a cryo-EM laboratory.
Q Rev Biophys. 2021 Jan 8;54:e2. doi: 10.1017/S003358352000013X.
6
Leginon: New features and applications.
Protein Sci. 2021 Jan;30(1):136-150. doi: 10.1002/pro.3967. Epub 2020 Nov 3.
7
General and robust covalently linked graphene oxide affinity grids for high-resolution cryo-EM.
Proc Natl Acad Sci U S A. 2020 Sep 29;117(39):24269-24273. doi: 10.1073/pnas.2009707117. Epub 2020 Sep 10.
8
Structural Basis for Helicase-Polymerase Coupling in the SARS-CoV-2 Replication-Transcription Complex.
Cell. 2020 Sep 17;182(6):1560-1573.e13. doi: 10.1016/j.cell.2020.07.033. Epub 2020 Jul 28.
9
Structure of the Pandemic.
Structure. 2020 Aug 4;28(8):874-878. doi: 10.1016/j.str.2020.07.007.
10
Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike.
Nature. 2020 Aug;584(7821):450-456. doi: 10.1038/s41586-020-2571-7. Epub 2020 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验