Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada.
Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
Cell Death Dis. 2021 Nov 26;12(12):1105. doi: 10.1038/s41419-021-04402-3.
Systemic hypoxia is a common element in most perinatal emergencies and is a known driver of Bnip3 expression in the neonatal heart. Bnip3 plays a prominent role in the evolution of necrotic cell death, disrupting ER calcium homeostasis and initiating mitochondrial permeability transition (MPT). Emerging evidence suggests a cardioprotective role for the prostaglandin E1 analog misoprostol during periods of hypoxia, but the mechanisms for this protection are not completely understood. Using a combination of mouse and cell models, we tested if misoprostol is cardioprotective during neonatal hypoxic injury by altering Bnip3 function. Here we report that hypoxia elicits mitochondrial-fragmentation, MPT, reduced ejection fraction, and evidence of necroinflammation, which were abrogated with misoprostol treatment or Bnip3 knockout. Through molecular studies we show that misoprostol leads to PKA-dependent Bnip3 phosphorylation at threonine-181, and subsequent redistribution of Bnip3 from mitochondrial Opa1 and the ER through an interaction with 14-3-3 proteins. Taken together, our results demonstrate a role for Bnip3 phosphorylation in the regulation of cardiomyocyte contractile/metabolic dysfunction, and necroinflammation. Furthermore, we identify a potential pharmacological mechanism to prevent neonatal hypoxic injury.
全身缺氧是大多数围产期急症的常见因素,也是新生儿心脏中 Bnip3 表达的已知驱动因素。Bnip3 在坏死性细胞死亡的演变中起着突出的作用,破坏内质网钙稳态并引发线粒体通透性转换 (MPT)。新出现的证据表明,前列腺素 E1 类似物米索前列醇在缺氧期间具有心脏保护作用,但这种保护的机制尚不完全清楚。我们使用小鼠和细胞模型的组合,通过改变 Bnip3 功能来测试米索前列醇在新生儿缺氧损伤期间是否具有心脏保护作用。在这里,我们报告说,缺氧会引发线粒体片段化、MPT、射血分数降低和坏死性炎症的证据,而米索前列醇治疗或 Bnip3 敲除可以消除这些证据。通过分子研究,我们表明米索前列醇导致 PKA 依赖性 Bnip3 在苏氨酸-181 处的磷酸化,随后 Bnip3 通过与 14-3-3 蛋白相互作用从线粒体 Opa1 和内质网重新分布。总之,我们的结果表明 Bnip3 磷酸化在调节心肌细胞收缩/代谢功能障碍和坏死性炎症中起作用。此外,我们确定了一种预防新生儿缺氧损伤的潜在药理机制。