Suppr超能文献

野生动物种群普查中的无人机、自动计数工具和人工神经网络。

Drones, automatic counting tools, and artificial neural networks in wildlife population censusing.

作者信息

Marchowski Dominik

机构信息

Ornithological Station, Museum and Institute of Zoology Polish Academy of Sciences Gdańsk Poland.

出版信息

Ecol Evol. 2021 Nov 3;11(22):16214-16227. doi: 10.1002/ece3.8302. eCollection 2021 Nov.

Abstract

The use of a drone to count the flock sizes of 33 species of waterbirds during the breeding and non-breeding periods was investigated.In 96% of 343 cases, drone counting was successful. 18.8% of non-breeding birds and 3.6% of breeding birds exhibited adverse reactions: the former birds were flushed, whereas the latter attempted to attack the drone.The automatic counting of birds was best done with ImageJ/Fiji microbiology software - the average counting rate was 100 birds in 64 s.Machine learning using neural network algorithms proved to be an effective and quick way of counting birds - 100 birds in 7 s. However, the preparation of images and machine learning time is time-consuming, so this method is recommended only for large data sets and large bird assemblages.The responsible study of wildlife using a drone should only be carried out by persons experienced in the biology and behavior of the target animals.

摘要

研究了使用无人机在繁殖期和非繁殖期统计33种水鸟种群数量的情况。在343次统计中,96%的情况下无人机计数成功。18.8%的非繁殖期鸟类和3.6%的繁殖期鸟类出现不良反应:前者受到惊扰飞走,而后者试图攻击无人机。使用ImageJ/Fiji微生物学软件自动计数鸟类效果最佳——平均计数速度为64秒统计100只鸟。事实证明,使用神经网络算法的机器学习是一种有效且快速的鸟类计数方法——7秒统计100只鸟。然而,图像准备和机器学习时间都很耗时,因此该方法仅推荐用于大数据集和大型鸟类群体。使用无人机对野生动物进行负责任的研究应由熟悉目标动物生物学和行为的人员进行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/048e/8601926/854a7468559e/ECE3-11-16214-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验