Madadi Milad, Heiska Juho, Multia Jenna, Karppinen Maarit
Department of Chemistry and Materials Science, Aalto University, FI-00076 Espoo, Finland.
ACS Appl Mater Interfaces. 2021 Dec 8;13(48):56793-56811. doi: 10.1021/acsami.1c17519. Epub 2021 Nov 26.
Atomic layer deposition (ALD) is the fastest growing thin-film technology in microelectronics, but it is also recognized as a promising fabrication strategy for various alkali-metal-based thin films in emerging energy technologies, the spearhead application being the Li-ion battery. Since the pioneering work in 2009 for Li-containing thin films, the field has been rapidly growing and also widened from lithium to other alkali metals. Moreover, alkali-metal-based metal-organic thin films have been successfully grown by combining molecular layer deposition (MLD) cycles of the organic molecules with the ALD cycles of the alkali metal precursor. The current literature describes already around 100 ALD and ALD/MLD processes for alkali-metal-bearing materials. Interestingly, some of these materials cannot even be made by any other synthesis route. In this review, our intention is to present the current state of research in the field by (i) summarizing the ALD and ALD/MLD processes so far developed for the different alkali metals, (ii) highlighting the most intriguing thin-film materials obtained thereof, and (iii) addressing both the advantages and limitations of ALD and MLD in the application space of these materials. Finally, (iv) a brief outlook for the future perspectives and challenges of the field is given.
原子层沉积(ALD)是微电子领域中发展最快的薄膜技术,但它也被认为是新兴能源技术中各种碱金属基薄膜的一种有前景的制造策略,其先锋应用是锂离子电池。自2009年关于含锂薄膜的开创性工作以来,该领域一直在迅速发展,并且从锂扩展到了其他碱金属。此外,通过将有机分子的分子层沉积(MLD)循环与碱金属前驱体的ALD循环相结合,已成功生长出碱金属基金属有机薄膜。当前的文献已经描述了大约100种用于含碱金属材料的ALD和ALD/MLD工艺。有趣的是,其中一些材料甚至无法通过任何其他合成路线制备。在本综述中,我们的目的是通过(i)总结迄今为止为不同碱金属开发的ALD和ALD/MLD工艺,(ii)突出由此获得的最引人入胜的薄膜材料,以及(iii)阐述ALD和MLD在这些材料应用领域中的优点和局限性,来呈现该领域的研究现状。最后,(iv)给出了该领域未来前景和挑战的简要展望。