Suppr超能文献

基于酵母的再利用方法治疗线粒体 DNA 耗竭综合征导致能够调节 dNTP 池的分子的鉴定。

A Yeast-Based Repurposing Approach for the Treatment of Mitochondrial DNA Depletion Syndromes Led to the Identification of Molecules Able to Modulate the dNTP Pool.

机构信息

Department of Chemistry Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.

出版信息

Int J Mol Sci. 2021 Nov 12;22(22):12223. doi: 10.3390/ijms222212223.

Abstract

Mitochondrial DNA depletion syndromes (MDS) are clinically heterogenous and often severe diseases, characterized by a reduction of the number of copies of mitochondrial DNA (mtDNA) in affected tissues. In the context of MDS, yeast has proved to be both an excellent model for the study of the mechanisms underlying mitochondrial pathologies and for the discovery of new therapies via high-throughput assays. Among the several genes involved in MDS, it has been shown that recessive mutations in MPV17 cause a hepatocerebral form of MDS and Navajo neurohepatopathy. MPV17 encodes a non selective channel in the inner mitochondrial membrane, but its physiological role and the nature of its cargo remains elusive. In this study we identify ten drugs active against MPV17 disorder, modelled in yeast using the homologous gene . All ten of the identified molecules cause a concomitant increase of both the mitochondrial deoxyribonucleoside triphosphate (mtdNTP) pool and mtDNA stability, which suggests that the reduced availability of DNA synthesis precursors is the cause for the mtDNA deletion and depletion associated with Sym1 deficiency. We finally evaluated the effect of these molecules on mtDNA stability in two other MDS yeast models, extending the potential use of these drugs to a wider range of MDS patients.

摘要

线粒体 DNA 耗竭综合征 (MDS) 是一种临床表现多样且通常较为严重的疾病,其特征是受累组织中线粒体 DNA (mtDNA) 拷贝数减少。在 MDS 的背景下,酵母已被证明既是研究线粒体病理机制的优秀模型,也是通过高通量检测发现新疗法的平台。在 MDS 相关的几个基因中,已经证实隐性突变的 MPV17 会导致肝脑型 MDS 和纳瓦霍神经肝疾病。MPV17 编码线粒体内膜的非选择性通道,但它的生理作用及其运输的物质仍不清楚。在本研究中,我们使用同源基因 在酵母中构建了 MPV17 障碍模型,并鉴定出十种针对该模型的有效药物。十种鉴定出的分子都能同时增加线粒体脱氧核糖核苷三磷酸 (mtdNTP) 池和 mtDNA 稳定性,这表明 DNA 合成前体的可用性降低是与 Sym1 缺陷相关的 mtDNA 缺失和耗竭的原因。我们最后在另外两个 MDS 酵母模型中评估了这些分子对 mtDNA 稳定性的影响,从而将这些药物的潜在用途扩展到更广泛的 MDS 患者群体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4385/8621932/2c5c89af69b0/ijms-22-12223-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验