Suppr超能文献

CTA-TNT@CNT混合基质膜的CO/CH和H/CH气体分离性能

CO/CH and H/CH Gas Separation Performance of CTA-TNT@CNT Hybrid Mixed Matrix Membranes.

作者信息

Regmi Chhabilal, Ashtiani Saeed, Hrdlička Zdeněk, Friess Karel

机构信息

Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic.

Department of Polymers, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic.

出版信息

Membranes (Basel). 2021 Nov 9;11(11):862. doi: 10.3390/membranes11110862.

Abstract

This study explored the underlying synergy between titanium dioxide nanotube (TNT) and carbon nanotube (CNT) hybrid fillers in cellulose triacetate (CTA)-based mixed matrix membranes (MMMs) for natural gas purification. The CNT@TNT hybrid nanofillers were blended with CTA polymer and cast as a thin film by a facile casting technique, after which they were used for single gas separation. The hybrid filler-based membrane depicted a higher CO uptake affinity than the single filler (CNT/TNT)-based membrane. The gas separation results indicate that the hybrid fillers (TNT@CNT) are strongly selective for CO over CH and H over CH. The increment in the CO/CH and H/CH selectivities compared to the pristine CTA membrane was 42.98 from 25.08 and 48.43 from 36.58, respectively. Similarly, the CO and H permeability of the CTA-TNT@CNT membrane increased by six- and five-fold, respectively, compared to the pristine CTA membrane. Such significant improvements in CO/CH and H/CH separation performance and thermal and mechanical properties suggest a feasible and practical approach for potential biogas upgrading and natural gas purification.

摘要

本研究探索了用于天然气净化的基于三醋酸纤维素(CTA)的混合基质膜(MMM)中二氧化钛纳米管(TNT)与碳纳米管(CNT)混合填料之间潜在的协同作用。将CNT@TNT混合纳米填料与CTA聚合物共混,并通过简便的流延技术流延成薄膜,之后将其用于单气体分离。基于混合填料的膜比基于单一填料(CNT/TNT)的膜表现出更高的CO吸附亲和力。气体分离结果表明,混合填料(TNT@CNT)对CO相对于CH以及对H相对于CH具有很强的选择性。与原始CTA膜相比,CO/CH和H/CH选择性的增量分别从25.08提高到42.98以及从36.58提高到48.43。同样,与原始CTA膜相比,CTA-TNT@CNT膜的CO和H渗透率分别提高了六倍和五倍。CO/CH和H/CH分离性能以及热性能和机械性能的如此显著改善表明,这对于潜在的沼气升级和天然气净化是一种可行且实用的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30f1/8625587/02c694d22366/membranes-11-00862-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验