Suppr超能文献

使用微载体培养和扩大牙髓来源的干细胞

Culturing and Scaling up Stem Cells of Dental Pulp Origin Using Microcarriers.

作者信息

Földes Anna, Reider Hajnalka, Varga Anita, Nagy Krisztina S, Perczel-Kovach Katalin, Kis-Petik Katalin, DenBesten Pamela, Ballagi András, Varga Gábor

机构信息

Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary.

Department of Applied Biotechnology and Food Science, University of Technology and Economics, H-1089 Budapest, Hungary.

出版信息

Polymers (Basel). 2021 Nov 15;13(22):3951. doi: 10.3390/polym13223951.

Abstract

Ectomesenchymal stem cells derived from the dental pulp are of neural crest origin, and as such are promising sources for cell therapy and tissue engineering. For safe upscaling of these cells, microcarrier-based culturing under dynamic conditions is a promising technology. We tested the suitability of two microcarriers, non-porous Cytodex 1 and porous Cytopore 2, for culturing well characterized dental pulp stem cells (DPSCs) using a shake flask system. Human DPSCs were cultured on these microcarriers in 96-well plates, and further expanded in shake flasks for upscaling experiments. Cell viability was measured using the alamarBlue assay, while cell morphology was observed by conventional and two-photon microscopies. Glucose consumption of cells was detected by the glucose oxidase/Clark-electrode method. DPSCs adhered to and grew well on both microcarrier surfaces and were also found in the pores of the Cytopore 2. Cells grown in tissue culture plates (static, non-shaking conditions) yielded 7 × 10 cells/well. In shake flasks, static preincubation promoted cell adhesion to the microcarriers. Under dynamic culture conditions (shaking) 3 × 10 cells were obtained in shake flasks. The DPSCs exhausted their glucose supply from the medium by day seven even with partial batch-feeding. In conclusion, both non-porous and porous microcarriers are suitable for upscaling ectomesenchymal DPSCs under dynamic culture conditions.

摘要

源自牙髓的外胚间充质干细胞起源于神经嵴,因此是细胞治疗和组织工程中有前景的细胞来源。为了安全地扩大这些细胞的规模,基于微载体的动态培养是一项有前景的技术。我们使用摇瓶系统测试了两种微载体,即无孔的Cytodex 1和多孔的Cytopore 2,用于培养特征明确的牙髓干细胞(DPSC)的适用性。人DPSC在96孔板中的这些微载体上培养,并在摇瓶中进一步扩增以进行扩大培养实验。使用alamarBlue测定法测量细胞活力,同时通过传统显微镜和双光子显微镜观察细胞形态。通过葡萄糖氧化酶/克拉克电极法检测细胞的葡萄糖消耗。DPSC在两种微载体表面均能附着并良好生长,并且在Cytopore 2的孔中也能发现。在组织培养板(静态、非摇动条件)中生长的细胞每孔产生7×10个细胞。在摇瓶中,静态预孵育促进细胞附着于微载体。在动态培养条件(摇动)下,摇瓶中获得了3×10个细胞。即使进行部分分批补料,DPSC在第7天时也耗尽了培养基中的葡萄糖供应。总之,无孔和多孔微载体均适用于在动态培养条件下扩大外胚间充质DPSC的规模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c323/8622966/017d4afa245a/polymers-13-03951-g001.jpg

相似文献

1
Culturing and Scaling up Stem Cells of Dental Pulp Origin Using Microcarriers.
Polymers (Basel). 2021 Nov 15;13(22):3951. doi: 10.3390/polym13223951.
2
Co-culture of Human Dental Pulp Stem Cells and Endothelial Cells Using Porous Biopolymer Microcarriers: A Feasibility Study for Bone Tissue Engineering.
Tissue Eng Regen Med. 2017 Jun 27;14(4):393-401. doi: 10.1007/s13770-017-0061-2. eCollection 2017 Aug.
6
8
A scalable approach to obtain mesenchymal stem cells with osteogenic potency on apatite microcarriers.
J Biomater Appl. 2014 Jul;29(1):93-103. doi: 10.1177/0885328213515734. Epub 2013 Dec 10.
9
Age of the donor affects the nature of cultured human dental pulp stem cells.
Saudi Dent J. 2021 Nov;33(7):524-532. doi: 10.1016/j.sdentj.2020.09.003. Epub 2020 Sep 24.
10
Clarifying the Tooth-Derived Stem Cells Behavior in a 3D Biomimetic Scaffold for Bone Tissue Engineering Applications.
Front Bioeng Biotechnol. 2020 Jun 26;8:724. doi: 10.3389/fbioe.2020.00724. eCollection 2020.

引用本文的文献

4
Research progress on optimization of isolation, cultivation and preservation methods of dental pulp stem cells for clinical application.
Front Bioeng Biotechnol. 2024 Apr 3;12:1305614. doi: 10.3389/fbioe.2024.1305614. eCollection 2024.
5
The Wisdom in Teeth: Neuronal Differentiation of Dental Pulp Cells.
Cell Reprogram. 2023 Feb;25(1):32-44. doi: 10.1089/cell.2022.0102. Epub 2023 Jan 31.

本文引用的文献

1
When Origin Matters: Properties of Mesenchymal Stromal Cells From Different Sources for Clinical Translation in Kidney Disease.
Front Med (Lausanne). 2021 Sep 20;8:728496. doi: 10.3389/fmed.2021.728496. eCollection 2021.
2
Poly(amino acid) based fibrous membranes with tuneable in vivo biodegradation.
PLoS One. 2021 Aug 13;16(8):e0254843. doi: 10.1371/journal.pone.0254843. eCollection 2021.
4
Silencing integrin α6 enhances the pluripotency-differentiation transition in human dental pulp stem cells.
Oral Dis. 2022 Apr;28(3):711-722. doi: 10.1111/odi.13771. Epub 2021 Feb 3.
5
STRO-1 positive cell expansion during osteogenic differentiation: A comparative study of three mesenchymal stem cell types of dental origin.
Arch Oral Biol. 2021 Feb;122:104995. doi: 10.1016/j.archoralbio.2020.104995. Epub 2020 Nov 26.
6
Investigation of the Cytotoxicity of Electrospun Polysuccinimide-Based Fiber Mats.
Polymers (Basel). 2020 Oct 11;12(10):2324. doi: 10.3390/polym12102324.
7
Tissue-specific mesenchymal stem cell-dependent osteogenesis in highly porous chitosan-based bone analogs.
Stem Cells Transl Med. 2021 Feb;10(2):303-319. doi: 10.1002/sctm.19-0385. Epub 2020 Oct 13.
8
Expansion of human mesenchymal stem/stromal cells (hMSCs) in bioreactors using microcarriers: lessons learnt and what the future holds.
Biotechnol Adv. 2020 Dec;45:107636. doi: 10.1016/j.biotechadv.2020.107636. Epub 2020 Sep 25.
9
Insight into the Role of Dental Pulp Stem Cells in Regenerative Therapy.
Biology (Basel). 2020 Jul 9;9(7):160. doi: 10.3390/biology9070160.
10
Biological Considerations in Scaling Up Therapeutic Cell Manufacturing.
Front Pharmacol. 2020 May 13;11:654. doi: 10.3389/fphar.2020.00654. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验