GTM-Grup de Recerca en Tecnologies Mèdia, La Salle Ramon Llull Univeristy, 08022 Barcelona, Spain.
GRITS-Grup de Recerca en Internet Techologies and Storage, La Salle Ramon Llull Univeristy, 08022 Barcelona, Spain.
Sensors (Basel). 2021 Nov 10;21(22):7470. doi: 10.3390/s21227470.
Many people living in urban environments nowadays are overexposed to noise, which results in adverse effects on their health. Thus, urban sound monitoring has emerged as a powerful tool that might enable public administrations to automatically identify and quantify noise pollution. Therefore, identifying multiple and simultaneous acoustic sources in these environments in a reliable and cost-effective way has emerged as a hot research topic. The purpose of this paper is to propose a two-stage classifier able to identify, in real time, a set of up to 21 urban acoustic events that may occur simultaneously (i.e., multilabel), taking advantage of physical redundancy in acoustic sensors from a wireless acoustic sensors network. The first stage of the proposed system consists of a multilabel deep neural network that makes a classification for each 4-s window. The second stage intelligently aggregates the classification results from the first stage of four neighboring nodes to determine the final classification result. Conducted experiments with real-world data and up to three different computing devices show that the system is able to provide classification results in less than 1 s and that it has good performance when classifying the most common events from the dataset. The results of this research may help civic organisations to obtain actionable noise monitoring information from automatic systems.
如今,许多生活在城市环境中的人都受到了过度的噪声暴露,这对他们的健康造成了不良影响。因此,城市声音监测已经成为一种强大的工具,使公共管理部门能够自动识别和量化噪声污染。因此,以可靠且具有成本效益的方式同时识别这些环境中的多个和同时发生的声源已成为一个热门研究课题。本文旨在提出一种两阶段分类器,该分类器能够实时识别最多 21 个同时发生的城市声事件(即多标签),利用来自无线声传感器网络的声传感器中的物理冗余。所提出系统的第一阶段由一个多标签深度神经网络组成,该神经网络对每个 4 秒窗口进行分类。第二阶段智能地聚合来自四个相邻节点的第一阶段的分类结果,以确定最终的分类结果。使用真实世界的数据和多达三种不同的计算设备进行的实验表明,该系统能够在不到 1 秒的时间内提供分类结果,并且在对数据集的最常见事件进行分类时具有良好的性能。这项研究的结果可能有助于公民组织从自动系统中获得可操作的噪声监测信息。