Suppr超能文献

基于反向散射辅助的非正交多址接入功率域网络编码的无线网络。

Backscatter Assisted NOMA-PLNC Based Wireless Networks.

作者信息

Rajkumar Samikkannu, Jayakody Dushantha Nalin K

机构信息

Centre for Telecommunication Research, School of Engineering, Sri Lanka Technological Campus, Padukka 10500, Sri Lanka.

School of Computer Science and Robotics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia.

出版信息

Sensors (Basel). 2021 Nov 15;21(22):7589. doi: 10.3390/s21227589.

Abstract

In this paper, sum capacity maximization of the non-orthogonal multiple access (NOMA)-based wireless network is studied in the presence of ambient backscattering (ABS). Assuming that ABS is located next to far nodes, it improves the signal strength of far node cluster. By applying suitable successive interference cancellation (SIC) operation, far node cluster act as an internet of things (IoT) reader. Moreover, to improve the uplink performance of the nodes, a physical layer network coding (PLNC) scheme is applied in the proposed network. Power optimization is employed at the access point (AP) to enhance the downlink performance with total transmit power constraint and minimum data rate requirement per user constraint using Lagrangian's function. In addition, end-to-end outage performance of the proposed wireless network is analyzed to enhance each wireless link capacity. Numerical results evident that the outage performance of the proposed network is significantly improved while using the ABS. Furthermore, the average bit error rate (BER) performance of the proposed wireless network is studied to improve the reliability. Simulation results are presented to validate the analytical expressions.

摘要

本文研究了在存在环境反向散射(ABS)的情况下,基于非正交多址接入(NOMA)的无线网络的和容量最大化问题。假设ABS位于远离节点的位置,它提高了远节点簇的信号强度。通过应用合适的连续干扰消除(SIC)操作,远节点簇充当物联网(IoT)阅读器。此外,为了提高节点的上行链路性能,在所提出的网络中应用了物理层网络编码(PLNC)方案。在接入点(AP)采用功率优化,以利用拉格朗日函数在总发射功率约束和每个用户的最小数据速率要求约束下提高下行链路性能。此外,分析了所提出的无线网络的端到端中断性能,以提高每个无线链路的容量。数值结果表明,使用ABS时所提出网络的中断性能得到了显著改善。此外,研究了所提出的无线网络的平均误码率(BER)性能以提高可靠性。给出了仿真结果以验证解析表达式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79fb/8620736/87b1bcbe8825/sensors-21-07589-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验