Department of Chemical and Biological Engineering, Gachon University, Seongnam-si 13120, Korea.
Department of Electrical Engineering, Gachon University, Seongnam-si 13120, Korea.
Sensors (Basel). 2021 Nov 17;21(22):7632. doi: 10.3390/s21227632.
We designed simply fabricated, highly sensitive, and cost-effective dual-polymer-coated Fabry-Perot interferometer (DFPI)-based temperature sensors by employing thermosensitive polymers and non-thermosensitive polymers, as well as different two successive dip-coating techniques (stepwise dip coating and polymer mixture coating). Seven sensors were fabricated using different polymer combinations for performance optimization. The experiments demonstrated that the stepwise dip-coated dual thermosensitive polymer sensors exhibited the highest sensitivity (2142.5 pm °C for poly(methyl methacrylate)-polycarbonate (PMMA_PC) and 785.5 pm °C for poly(methyl methacrylate)- polystyrene (PMMA_PS)). Conversely, the polymer-mixture-coated sensors yielded low sensitivities (339.5 pm °C for the poly(methyl methacrylate)-polycarbonate mixture (PMMA_PC mixture) and 233.5 pm °C for the poly(methyl methacrylate)-polystyrene mixture (PMMA_PS mixture). Thus, the coating method, polymer selection, and thin air-bubble-free coating are crucial for high-sensitivity DFPI-based sensors. Furthermore, the DFPI-based sensors yielded stable readouts, based on three measurements. Our comprehensive results confirm the effectiveness, reproducibility, stability, fast response, feasibility, and accuracy of temperature measurements using the proposed sensors. The excellent performance and simplicity of our proposed sensors are promising for biomedical, biochemical, and physical applications.
我们通过使用热敏聚合物和非热敏聚合物以及两种不同的连续浸涂技术(分步浸涂和聚合物混合涂层),设计了简单制造、高灵敏度和具有成本效益的双聚合物涂层法布里-珀罗干涉仪(DFPI)基温度传感器。使用不同的聚合物组合制造了七个传感器以进行性能优化。实验表明,分步浸涂的双热敏聚合物传感器具有最高的灵敏度(聚甲基丙烯酸甲酯-聚碳酸酯(PMMA_PC)为 2142.5 pm °C,聚甲基丙烯酸甲酯-聚苯乙烯(PMMA_PS)为 785.5 pm °C)。相反,聚合物混合涂层传感器产生的灵敏度较低(聚甲基丙烯酸甲酯-聚碳酸酯混合物(PMMA_PC 混合物)为 339.5 pm °C,聚甲基丙烯酸甲酯-聚苯乙烯混合物(PMMA_PS 混合物)为 233.5 pm °C)。因此,涂层方法、聚合物选择和无薄气泡的涂层对于高灵敏度的 DFPI 基传感器至关重要。此外,DFPI 基传感器基于三次测量得出了稳定的读数。我们的综合结果证实了所提出的传感器在测量温度方面的有效性、可重复性、稳定性、快速响应、可行性和准确性。我们提出的传感器具有出色的性能和简单的结构,有望在生物医学、生化和物理应用中得到应用。