Huang Chia-Chien, Chang Ruei-Jan, Cheng Ching-Wen
Institute of Nanoscience, National Chung Hsing University, Taichung 40227, Taiwan.
Department of Physics, National Chung Hsing University, Taichung 40227, Taiwan.
Nanomaterials (Basel). 2021 Nov 6;11(11):2981. doi: 10.3390/nano11112981.
Manipulating optical signals in the mid-infrared (mid-IR) range is a highly desired task for applications in chemical sensing, thermal imaging, and subwavelength optical waveguiding. To guide highly confined mid-IR light in photonic chips, graphene-based plasmonics capable of breaking the optical diffraction limit offer a promising solution. However, the propagation lengths of these materials are, to date, limited to approximately 10 µm at the working frequency = 20 THz. In this study, we proposed a waveguide structure consisting of multilayer graphene metamaterials (MLGMTs). The MLGMTs support the fundamental volume plasmon polariton mode by coupling plasmon polaritons at individual graphene sheets over a silicon nano-rib structure. Benefiting from the high conductivity of the MLGMTs, the guided mode shows ultralow loss compared with that of conventional graphene-based plasmonic waveguides at comparable mode sizes. The proposed design demonstrated propagation lengths of approximately 20 µm (four times the current limitations) at an extremely tight mode area of 10, where is the diffraction-limited mode area. The dependence of modal characteristics on geometry and material parameters are investigated in detail to identify optimal device performance. Moreover, fabrication imperfections are also addressed to evaluate the robustness of the proposed structure. Moreover, the crosstalk between two adjacent present waveguides is also investigated to demonstrate the high mode confinement to realize high-density on-chip devices. The present design offers a potential waveguiding approach for building tunable and large-area photonic integrated circuits.
在中红外(mid-IR)范围内操纵光信号是化学传感、热成像和亚波长光波导应用中非常期望实现的任务。为了在光子芯片中引导高度受限的中红外光,能够突破光学衍射极限的基于石墨烯的等离子体技术提供了一个有前景的解决方案。然而,迄今为止,这些材料在工作频率( = 20)太赫兹时的传播长度限制在约(10)微米。在本研究中,我们提出了一种由多层石墨烯超材料(MLGMTs)组成的波导结构。MLGMTs通过在硅纳米肋结构上的单个石墨烯片之间耦合等离子体激元来支持基本体等离子体激元极化子模式。受益于MLGMTs的高导电性,与具有可比模式尺寸的传统基于石墨烯的等离子体波导相比,导模显示出超低损耗。所提出的设计在(10)的极其紧密的模式面积下展示了约(20)微米的传播长度(是当前限制的四倍),其中( )是衍射极限模式面积。详细研究了模态特性对几何和材料参数的依赖性,以确定最佳器件性能。此外,还考虑了制造缺陷以评估所提出结构的稳健性。此外,还研究了两个相邻现有波导之间的串扰,以证明高模式限制以实现高密度片上器件。本设计为构建可调谐和大面积光子集成电路提供了一种潜在的波导方法。