Suppr超能文献

用化学镀镍磷催化纳米涂层优化析氧反应

Optimization of Oxygen Evolution Reaction with Electroless Deposited Ni-P Catalytic Nanocoating.

作者信息

Battiato Sergio, Urso Mario, Cosentino Salvatore, Pellegrino Anna Lucia, Mirabella Salvo, Terrasi Antonio

机构信息

IMM-CNR, Università di Catania, Via S. Sofia 64, I-95123 Catania, Italy.

Dipartimento di Scienze Chimiche, Università degli Studi di Catania, INSTM UdR Catania, Viale Andrea Doria 6, I-95125 Catania, Italy.

出版信息

Nanomaterials (Basel). 2021 Nov 9;11(11):3010. doi: 10.3390/nano11113010.

Abstract

The low efficiency of water electrolysis mostly arises from the thermodynamic uphill oxygen evolution reaction. The efficiency can be greatly improved by rationally designing low-cost and efficient oxygen evolution anode materials. Herein, we report the synthesis of Ni-P alloys adopting a facile electroless plating method under mild conditions on nickel substrates. The relationship between the Ni-P properties and catalytic activity allowed us to define the best conditions for the electroless synthesis of highperformance Ni-P catalysts. Indeed, the electrochemical investigations indicated an increased catalytic response by reducing the thickness and Ni/P ratio in the alloy. Furthermore, the Ni-P catalysts with optimized size and composition deposited on Ni foam exposed more active sites for the oxygen evolution reaction, yielding a current density of 10 mA cm at an overpotential as low as 335 mV, exhibiting charge transfer resistances of only a few ohms and a remarkable turnover frequency (TOF) value of 0.62 s at 350 mV. The present study provides an advancement in the control of the electroless synthetic approach for the design and large-scale application of high-performance metal phosphide catalysts for electrochemical water splitting.

摘要

水电解效率低下主要源于热力学上的析氧反应。通过合理设计低成本、高效的析氧阳极材料,效率可得到大幅提高。在此,我们报道了在温和条件下,采用简便的化学镀方法在镍基底上合成镍磷合金。镍磷合金的性质与催化活性之间的关系,使我们能够确定高性能镍磷催化剂化学合成的最佳条件。实际上,电化学研究表明,通过减小合金的厚度和镍磷比,催化响应增强。此外,沉积在泡沫镍上的尺寸和组成经过优化的镍磷催化剂,为析氧反应暴露出更多活性位点,在低至335 mV的过电位下,电流密度达到10 mA cm,电荷转移电阻仅为几欧姆,在350 mV时具有显著的0.62 s的周转频率(TOF)值。本研究在控制化学合成方法以设计和大规模应用用于电化学水分解的高性能金属磷化物催化剂方面取得了进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bad8/8623144/c0fa5e8fd012/nanomaterials-11-03010-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验