Suppr超能文献

由于天然有机物的存在,进水浓度变化对浸没式膜系统中超细和普通粉末活性炭中微量污染物解吸的影响:实验和双组分分支孔动力学模型。

Desorption of micropollutant from superfine and normal powdered activated carbon in submerged-membrane system due to influent concentration change in the presence of natural organic matter: Experiments and two-component branched-pore kinetic model.

机构信息

Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan.

Graduate School of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan.

出版信息

Water Res. 2022 Jan 1;208:117872. doi: 10.1016/j.watres.2021.117872. Epub 2021 Nov 17.

Abstract

Submerged-membrane hybrid systems (SMHSs) that combine membrane filtration with powdered activated carbon (PAC) take advantage of PAC's ability to adsorb and remove contaminants dissolved in water. However, the risk of contaminant desorption due to temporal changes in the influent concentration of the contaminant has not been thoroughly explored. In this study, we used a SMHS with conventionally-sized PAC or superfine PAC (SPAC) to remove 2-methylisoborneol (MIB), a representative micropollutant, from water containing natural organic matter (NOM), with the goal of elucidating adsorption-desorption phenomena in the SMHS. We found that 20-40% of the MIB that adsorbed on PAC and SPAC while the influent was contaminated with MIB (6 h, contamination period) desorbed to the liquid phase within 6 h from the time that the MIB-containing influent was replaced by MIB-free influent (no-contamination period). The percentage of desorption during the no-contamination period increased with increasing MIB breakthrough concentration during the contamination period. These findings indicate that the PAC/SPAC in the SMHS should be replaced while the breakthrough concentration is low, not only to keep a high removal rate but also to decrease the desorption risk. SPAC is fast in removal by adsorption, but it is also fast in release by desorption. SPAC (median diameter: 0.94 µm) showed almost the same adsorption-desorption kinetics as PAC (12.1 µm) of a double dose. A two-component branched-pore diffusion model combined with an IAST (ideal adsorbed solution theory)-Freundlich isotherm was used to describe and analyze the adsorption-desorption of MIB. The diffusivity of MIB molecules in the pores of the activated carbon particles decreased markedly in a short period of time. This decrease, which was attributed to fouling of the activated carbon in the SMHS by coagulant-treated water containing NOM, not only reduced the rate of MIB removal during the contamination period but also hindered the rate of MIB desorption during the no-contamination period and thus prevented the effluent MIB concentration from becoming high. On the other hand, coagulation did not change the concentration of NOM that competes with MIB for adsorption sites.

摘要

浸没式膜混合系统(SMHS)将膜过滤与粉末活性炭(PAC)相结合,利用 PAC 吸附和去除水中溶解的污染物的能力。然而,由于污染物的进水浓度随时间的变化而导致污染物解吸的风险尚未得到充分研究。在这项研究中,我们使用常规尺寸的 PAC 或超细 PAC(SPAC)的 SMHS 从含有天然有机物(NOM)的水中去除 2-甲基异莰醇(MIB),这是一种代表性的微量污染物,旨在阐明 SMHS 中的吸附-解吸现象。我们发现,当进水被 MIB 污染时(6 小时,污染期),吸附在 PAC 和 SPAC 上的 20-40%的 MIB 在 MIB 含量的进水被 MIB 无进水替代后的 6 小时内解吸到液相中(无污染期)。无污染期内的解吸百分比随污染期内 MIB 穿透浓度的增加而增加。这些发现表明,SMHS 中的 PAC/SPAC 应该在穿透浓度较低时更换,不仅要保持高去除率,还要降低解吸风险。SPAC 吸附速度快,但解吸速度也快。SPAC(中值直径:0.94µm)的吸附-解吸动力学与 PAC(12.1µm)的两倍剂量几乎相同。采用双组分支孔扩散模型与 IAST(理想吸附溶液理论)-Freundlich 等温线相结合,对 MIB 的吸附-解吸进行描述和分析。在短时间内,MIB 分子在活性炭颗粒孔中的扩散系数明显下降。这种下降归因于含有 NOM 的凝结处理水对 SMHS 中活性炭的污染,不仅降低了污染期内 MIB 的去除率,而且阻碍了无污染期内 MIB 的解吸速率,从而防止了出水 MIB 浓度升高。另一方面,凝结并没有改变与 MIB 竞争吸附位点的 NOM 的浓度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验